Skip to main content
Log in

Global dynamics of the diffusive Lotka–Volterra competition model with stage structure

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The global asymptotic behavior of the classical diffusive Lotka–Volterra competition model with stage structure is studied. A complete classification of the global dynamics is given for the weak competition case. It is shown that under otherwise same conditions, the species with shorter maturation time prevails. The method is also applied to the global dynamics of another competition models with time delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Omari, J.F.M., Gourley, S.A.: Monotone travelling fronts in an age-structured reaction-diffusion model of a single species. J. Math. Biol. 45(4), 294–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Omari, J.F.M., Gourley, S.A.: Stability and traveling fronts in Lotka–Volterra competition model with stage structure. SIAM J. Appl. Math. 63(6), 2063–2086 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley, Chichester (2003)

    MATH  Google Scholar 

  5. Diekmann, O.: A beginner’s guide to adaptive dynamics. In: Diekmann, O. (ed.) Mathematical Modelling of Population Dynamics. Banach Center Publications, vol. 63, pp. 47–86. Institute of Mathematics of the Polish Academy of Sciences, Warsaw (2004)

    Google Scholar 

  6. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 37(1), 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gause, G.F.: The Struggle for Existence. Haefner, Mineola (1934)

    Book  MATH  Google Scholar 

  8. Gourley, S.A., Ruan, S.-G.: Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal. 35(3), 806–822 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, X.-Q., Ni, W.-M.: The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system I: heterogeneity vs. homogeneity. J. Differ. Equ. 254(2), 528–546 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. He, X.-Q., Ni, W.-M.: The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system II: the general case. J. Differ. Equ. 254(10), 4088–4108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, X.-Q., Ni, W.-M.: Global dynamics of the Lotka–Volterra competition–diffusion system: diffusion and spatial heterogeneity. I. Commun. Pure Appl. Math. 69(5), 981–1014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, X.-Q., Ni, W.-M.: Global dynamics of the Lotka–Volterra competition–diffusion system with equal amount of total resources. II. Calc. Var. Partial Differ. Equ. 55(2), 25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, X.-Q., Ni, W.-M.: Global dynamics of the Lotka–Volterra competition–diffusion system with equal amount of total resources. III. Calc. Var. Partial Differ. Equ. 56(5), 132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics Series, vol. 247. Longman Scientific & Technical, Harlow (1991)

    Google Scholar 

  15. Kerscher, W., Nagel, R.: Asymptotic behavior of one-parameter semigroups of positive operators. Acta Appl. Math. 2(3–4), 297–309 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lam, K.-Y., Ni, W.-M.: Uniqueness and complete dynamics in heterogeneous competition–diffusion systems. SIAM J. Appl. Math. 72(6), 1695–1712 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levin, S.A.: Population dynamic models in heterogeneous environments. Annu. Rev. Ecol. Evol. Syst. 7(1), 287–310 (1976)

    Article  Google Scholar 

  18. Lin, G., Li, W.-T.: Bistable wavefronts in a diffusive and competitive Lotka–Volterra type system with nonlocal delays. J. Differ. Equ. 244(3), 487–513 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, G., Li, W.-T., Ma, M.: Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models. Discrete Contin. Dyn. Syst. Ser. B 13(2), 393–414 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Lotka, A.J.: The growth of mixed populations: two species competing for a common food supply. J. Wash. Acad. Sci. 22(16/17), 461–469 (1932)

    MATH  Google Scholar 

  21. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223(2), 400–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lou, Y., Lutscher, F.: Evolution of dispersal in open advective environments. J. Math. Biol. 69(6–7), 1319–1342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lou, Y., Xiao, D.-M., Zhou, P.: Qualitative analysis for a Lotka–Volterra competition system in advective homogeneous environment. Discrete Contin. Dyn. Syst. 36(2), 953–969 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Lou, Y., Zhao, X.-Q., Zhou, P.: Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments. J. Math. Pures Appl. 121, 47–82 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lou, Y., Zhou, P.: Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J. Differ. Equ. 259(1), 141–171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lv, G.-Y., Wang, M.-X.: Traveling wave front in diffusive and competitive Lotka–Volterra system with delays. Nonlinear Anal. Real World Appl. 11(3), 1323–1329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Metz, J.A.J., Diekmann, O. (eds.): The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin (1986). (papers from the colloquium held in Amsterdam, 1983)

    Google Scholar 

  28. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  29. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence, RI (1995)

    MATH  Google Scholar 

  30. So, J.W.-H., Wu, J.-H., Zou, X.-F.: A reaction–diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2012), 1841–1853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thieme, H.R., Zhao, X.-Q.: A non-local delayed and diffusive predator-prey model. Nonlinear Anal. Real World Appl. 2(2), 145–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tilman, D.: Resource Competition and Community Structure. Princeton University Press, Princeton (1982)

    Google Scholar 

  33. Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3(1), 3–51 (1928)

    Article  MathSciNet  Google Scholar 

  34. Wu, J.-H.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  35. Yan, S., Guo, S.-J.: Dynamics of a Lotka–Volterra competition–diffusion model with stage structure and spatial heterogeneity. Discrete Contin. Dyn. Syst. Ser. B 23(4), 1559–1579 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Zhao, X.-Q., Zhou, P.: On a Lotka–Volterra competition model: the effects of advection and spatial variation. Calc. Var. Partial Differ. Equ. 55(4), 73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, P.: On a Lotka–Volterra competition system: diffusion vs advection. Calc. Var. Partial Differ. Equ. 55(6), 137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, P., Xiao, D.-M.: Global dynamics of a classical Lotka–Volterra competition–diffusion–advection system. J. Funct. Anal. 275(2), 356–380 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, P., Zhao, X.-Q.: Evolution of passive movement in advective environments: general boundary condition. J. Differ. Equ. 264(6), 4176–4198 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Chen.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shanshan Chen is supported by National Natural Science Foundation of China (No. 11771109) and a grant from China Scholarship Council, and Junping Shi is supported by US-NSF Grant DMS-1715651.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Shi, J. Global dynamics of the diffusive Lotka–Volterra competition model with stage structure. Calc. Var. 59, 33 (2020). https://doi.org/10.1007/s00526-019-1693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1693-y

Mathematics Subject Classification

Navigation