Skip to main content
Log in

Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show that a sufficient condition for the weak limit of a sequence of \(W^1_q\)-homeomorphisms with finite distortion to be almost everywhere injective for \(q \ge n-1\), can be stated by means of composition operators. Applying this result, we study nonlinear elasticity problems with respect to these new classes of mappings. Furthermore, we impose loose growth conditions on the stored-energy function for the class of \(W^1_n\)-homeomorphisms with finite distortion and integrable inner as well as outer distortion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Müller et al. [44] improved the assumption \(q\ge \frac{p}{p-1}\) to \(q\ge \frac{n}{n-1}\).

  2. Considering that \(D\varphi =0\) a.e. if \(J (x, \varphi ) = 0\), it is assumed that \(K_O (x, \varphi ) = 1\) if \(J (x, \varphi ) = 0\).

  3. Considering that \(Adj D\varphi =0\) a.e. if \(J (x, \varphi ) = 0\), it is assumed that \(K_I (x, \varphi ) = 1\) if \(J (x, \varphi ) = 0\).

  4. In this paper we use a notation \(\Vert F \mid L_p(\varOmega )\Vert \) for the norm of \(F(\cdot )\) in \(L_p(\varOmega )\). In some another texts the same norm is denoted by \(\Vert F\Vert _{L_p(\varOmega )}\).

  5. See [61] for another proof of this property under weaker assumptions.

  6. Some authors include condition \(J(x,f) \ge 0\) in Definition 2. We do not use the condition for the Jacobian to be non-negative as it is unnecessary in the context of the theory of composition operators, see details in [61].

  7. Necessity is proved in [68, 69] (see also earlier work [59]), and sufficiency, in Theorem 6 of [61].

  8. The exponent r from Theorem 8 can be expressed as \(r=\frac{n (n-1) s}{ns + 1 - s} \ge n-1\).

  9. \(a \sim b\) means that there exist constants \(C_1\), \(C_2 > 0\), such that \(C_1 a \le b \le C_2 a\).

  10. Let us remind that for \(a_i\), \(b_i \ge 0\), \(\frac{1}{k} + \frac{1}{k'} = 1\), \( \bigl |\sum a_i b_i\bigr | = \big (\sum a_i^k \big )^{1/k} \big (\sum b_i^{k'}\big )^{1/{k'}} \) if and only if \(a_i^k\) and \(b_i^{k'}\) are proportional.

  11. i.e. \(\lim _{r\rightarrow 0} \frac{|A \cap B(x,r)|}{|B(x,r)|} = 1\).

  12. The exponent r from Theorem 8 can be expressed as \(r=\frac{n (n-1) s}{ns + 1 - s} \ge n-1\).

  13. i.e. determinants of the matrix that is formed by taking the elements of the original matrix from the rows whose indexes are in \(({i_1},i_2,\ldots ,{i_l})\) and columns whose indexes are in \(({j_1},j_2,\ldots ,{j_l})\).

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Astala, K., Iwaniec, T., Martin, G.J., Onninen, J.: Extremal mappings of finite distortion. Proc. Lond. Math. Soc. (3) 91(3), 655–702 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball, J.M.: Global invertibility of Sobolev functions and the interpretation of matter. Proc. R. Soc. Edinb. Sect. A 88, 315–328 (1981)

    Article  MATH  Google Scholar 

  5. Ball, J.M.: Some open problems in elasticity. In: P.N. et al. (ed.) Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002)

  6. Ball, J.M.: Progress and puzzles in nonlinear elasticity, poly-, quasi- and rank-one convexity in applied mechanics. CISM Int. Centre Mech. Sci. 516, 1–15 (2010)

    Article  Google Scholar 

  7. Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barchiesi, M., Henao, D., Mora-Corral, C.: Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity. Arch. Ration. Mech. Anal. 224, 743–816 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauman, P., Phillips, D.: Univalent minimizers of polyconvex functionals in 2 dimensions. Arch. Ration. Mech. Anal. 126, 161–181 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baykin, A.N., Vodopyanov, S.K.: Capacity estimates, Liouville’s theorem, and singularity removal for mappings with bounded \((p, q)\)-distortion. Sib. Math. J. 56(2), 237–261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benešová, B., Kampschulte, M.: Gradient Young measures generated by quasiconformal maps the plane. SIAM J. Math. Anal. 47, 4404–4435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benešová, B., Kružík, M.: Characterization of gradient Young measures generated by homeomorphisms in the plane. ESAIM Control Optim. Calc. Var. 22, 267–288 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G.: Mathematical Elasticity Vol. I : Three-Dimensional Elasticity, Series “Studies in Mathematics and its Applications”. North-Holland, Amsterdam (1988)

    Google Scholar 

  14. Ciarlet, P.G., Nečas, J.: Unilateral problems in nonlinear three-dimensional elasticity. Arch. Ration. Mech. Anal. 87(4), 319–338 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G., Nečas, J.: Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97(3), 171–188 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conti, S., De Lellis, C.: Some remarks on the theory of elasticity for compressible Neohookean materials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2, 521–549 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  18. Fonseca, I., Gangbo, W.: Local invertibility of Sobolev functions. SIAM J. Math. Anal. 26, 280–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gehring, F.W., Iwaniec, T.: The limit of mappings with finite distortion. Ann. Acad. Sci. Fenn. Math. 24, 253–264 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Guzman, M.: Differentiation of integrals in \({\mathbb{R}}^n\). In: Lecture Notes in Mathematics, Vol. 481. Springer (1975)

  21. Hajłasz, P.: Change of variables formula under minimal assumptions. Colloq. Math. 64(1), 93–101 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heinonen, J., Koskela, P.: Sobolev mappings with integrable dilatation. Arch. Ration. Mech. Anal. 125(1), 81–97 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Henao, D., Mora-Corral, C.: Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Ration. Mech. Anal. 197, 619–655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Henao, D., Mora-Corral, C.: Regularity of inverses of Sobolev deformations with finite surface energy. J. Funct. Anal. 268, 2356–2378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hencl, S., Koskela, P.: Mappings of finite distortion: discreteness and openness for quasilight mappings. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(3), 331–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hencl, S., Koskela, P.: Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal. 180(1), 75–95 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hencl, S., Koskela, P.: Lectures on mappings of finite distortion. In: Lecture Notes in Mathematics, Vol. 2096. Springer (2014)

  28. Hencl, S., Malý, J.: Mappings of finite distortion: Hausdorff measure of zero sets. Math. Ann. 324(3), 451–464 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hencl, S., Onninen, J.: Jacobian of weak limits of sobolev homeomorphisms. Adv. Calc. Var. 11(1), 65–73 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hencl, S., Rajala, K.: Optimal assumptions for discreteness. Arch. Ration. Mech. Anal. 3, 775–783 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  32. Iwaniec, T., Onninen, J.: Hyperelastic deformations of smallest total energy. Arch. Ration. Mech. Anal. 194(3), 927–986 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Iwaniec, T., Onninen, J.: Deformations of finite conformal energy: existence, and removability of singularities. Proc. Lond. Math. Soc. (3) 100(1), 1–23 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Iwaniec, T., Onninen, J.: Deformations of finite conformal energy: boundary behavior and limits theorems. Trans. Am. Math. Soc. 363(11), 5605–5648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iwaniec, T., Onninen, J.: \(n\)-Harmonic mappings between annuli. Mem. Am. Math. Soc. 218, 1023 (2012)

    MATH  Google Scholar 

  36. Iwaniec, T., Šverák, V.: On mappings with integrable dilatation. Proc. Am. Math. Soc. 118, 185–188 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Koskela, P., Malý, J.: Mappings of finite distortion: the zero set of the Jacobian. J. Eur. Math. Soc. 5, 95–105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Manfredi, J., Villamor, E.: An extension of Reshetnyak’s theorem. Indiana Univ. Math. J. 47(3), 1131–1145 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Martio, O., Malý, J.: Lusin’s condition (N) and mappings of the class \(W^1_n\). J. Reine Angew. Math. 485, 19–36 (1995)

    MATH  Google Scholar 

  40. Maz’ya, V.: Sobolev spaces: with applications to elliptic partial differential equations. In: Grundlehren der mathematischen Wissenschaften, vol. 342. Springer, Berlin (2011)

  41. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  42. Mostow, G.D.: Quasi-conformal mappings in \(n\)-space and the rigidity of the hyperbolic space forms. Publ. Math. Inst. Hautes Études Sci. 34, 53–104 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  43. Müller, S.: Higher integrability of determinants and weak convergence in \(L^1\). J. Reine Angew. Math. 412, 20–34 (1990)

    MathSciNet  MATH  Google Scholar 

  44. Müller, S., Qi, T., Yan, B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré Anal. Non Linéaire 11, 217–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Müller, S., Spector, S.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Ration. Mech. Anal. 131(1), 1–66 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Müller, S., Spector, S., Tang, Q.: Invertibility and a topological property of Sobolev maps. SIAM J. Math. Anal. 27, 959–976 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ogden, R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubber-like solids. Proc. Roy. Soc. Lond. A 328, 567–583 (1972)

    Article  MATH  Google Scholar 

  48. Onninen, J.: Regularity of the inverse of spatial mappings with finite distortion. Calc. Var. Partial Differ. Equ. 26(3), 331–341 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rajala, K.: Remarks on the Iwaniec–Šverák conjecture. Indiana Univ. Math. J. 59(6), 2027–2039 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rajala, K.: Reshetnyak’s theorem and the inner distortion. Pure Appl. Math. Q. 7, 411–424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Reshetnyak, Y.G.: On the stability of conformal mappings in multidimensional spaces. Sib. Math. J. 8(1), 69–85 (1967)

    Article  MATH  Google Scholar 

  52. Reshetnyak, Y.G.: Space mappings with bounded distortion. Sib. Math. J. 8(3), 466–487 (1967)

    Article  MATH  Google Scholar 

  53. Reshetnyak, Y.G.: Space mappings with bounded distortion. In: Translations of Mathematical Monographs, 73. AMS, New York (1989)

  54. Rickman, S.: Quasiregular Mappings. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  55. Šverák, V.: Regularity properties of deformations with finite energy. Arch. Ration. Mech. Anal. 100(2), 105–127 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. Swanson, D., Ziemer, W.P.: A topological aspect of Sobolev mappings. Calc. Var. Partial Differ. Equ. 14(1), 69–84 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Swanson, D., Ziemer, W.P.: The image of a weakly differentiable mapping. SIAM J. Math. Anal. 35(5), 1099–1109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tang, Q.: Almost-everywhere injectivity in nonlinear elasticity. Proc. Roy. Soc. Edinb. Sect. A 109(1–2), 79–95 (1988)

    MathSciNet  MATH  Google Scholar 

  59. Ukhlov, A.D.O.: On mappings generating the embeddings of Sobolev spaces. Sib. Math. J. 34(1), 185–192 (1993)

    MATH  Google Scholar 

  60. Vodopyanov, S.K.: Spaces of differential forms and maps with controlled distortion. Izv. Math. 74(4), 5–32 (2010)

    MathSciNet  Google Scholar 

  61. Vodopyanov, S.K.: Regularity of mappings inverse to Sobolev mappings. Mat. Sb. 203(10), 1383–1410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Vodopyanov, S.K.: Basics of the quasiconformal analysis of a two-index scale of spatial mappings. Sib. Math. J. 59(5), 805–834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Vodopyanov, S.K.: Differentiability of mappings of the sobolev space \(W^1_{n-1}\) with conditions on the distortion function. Sib. Math. J. 59(6), 983–1005 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Vodopyanov, S.K., Gol’dshtein, V.M.: Quasiconformal mappings and spaces of functions with generalized first derivatives. Sib. Math. J. 17(3), 399–411 (1976)

    Article  Google Scholar 

  65. Vodopyanov, S.K., Kudryavtseva, N.A.: On the convergence of mappings with \(k\)-finite distortion. Math. Notes 102(6), 878–883 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. Vodopyanov, S.K., Molchanova, A.O.: Variational problems of the nonlinear elasticity theory in certain classes of mappings with finite distortion. Dokl. Math. 92(3), 739–742 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Vodopyanov, S.K., Molchanova, A.O.: Lower semicontinuity of distortion coefficient of mappings with bounded \((\theta,1)\)-weighted \((p, q)\)-distortion. Sib. Math. J. 57(5), 999–1011 (2016)

    MathSciNet  Google Scholar 

  68. Vodopyanov, S.K., Ukhlov, A.D.O.: Sobolev spaces and \((P, Q)\)-quasiconformal mappings of Carnot groups. Sib. Math. J. 39(4), 665–682 (1998)

    Article  MathSciNet  Google Scholar 

  69. Vodopyanov, S.K., Ukhlov, A.D.O.: Superposition operators in Sobolev spaces. Russian Math. (Iz. VUZ) 46(10), 9–31 (2002)

    MathSciNet  MATH  Google Scholar 

  70. Whitney, H.: On totally differentiable and smooth functions. Pac. J. Math. 5(1), 143–159 (1951)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for critically reading and comments, which helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Vodopyanov.

Additional information

Communicated by J. Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported in Sections 1 and 2 by the Ministry of Science and Education of the Russian Federation (Grant 1.3087.2017/4.6) and in Sections 3 and 4 by the Regional Mathematical Center of Novosibirsk State University. The first author was partially supported by Austrian Science Fund (FWF) projects M 2670.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molchanova, A., Vodopyanov, S. Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity. Calc. Var. 59, 17 (2020). https://doi.org/10.1007/s00526-019-1671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1671-4

Mathematics Subject Classification

Navigation