Abstract
Using the electrostatic potential u due to a uniformly charged body \(\Omega \subset {\mathbb {R}}^n\), \(n\ge 3\), we introduce a family of monotone quantities associated with the level set flow of u. The derived monotonicity formulas are exploited to deduce a new quantitative version of the classical Willmore inequality.
Similar content being viewed by others
References
Agostiniani, V., Fogagnolo, M., Mazzieri, L.: Minkowski inequalities via nonlinear potential theory. arXiv:1906.00322
Agostiniani, V., Fogagnolo, M., Mazzieri, L.: Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature. arXiv:1812.05022
Agostiniani, V., Mazzieri, L.: Riemannian aspects of potential theory. J. Math. Pures Appl. 104(3), 561–586 (2015)
Agostiniani, V., Mazzieri, L.: Comparing monotonicity formulas for electrostatic potentials and static metrics. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(1), 7–20 (2017)
Agostiniani, V., Mazzieri, L.: On the geometry of the level sets of bounded static potentials. Commun. Math. Phys. 355(1), 261–301 (2017)
Borghini, S., Mascellani, G., Mazzieri, L.: Some sphere theorems in linear potential theory. Trans. Am. Math. Soc. 371(11), 7757–7790 (2019)
Borghini, S., Mazzieri, L.: On the mass of static metrics with positive cosmological constant: II. arXiv:1711.07024
Borghini, S., Mazzieri, L.: On the mass of static metrics with positive cosmological constant: I. Class. Quantum Gravity 35(12), 125001 (2018)
Bour, V., Carron, G.: Optimal integral pinching results. Ann. Sci. Éc. Norm. Supér. (4) 48(1), 41–70 (2015)
Bray, H.L., Miao, P.: On the capacity of surfaces in manifolds with nonnegative scalar curvature. Invent. Math. 172(3), 459–475 (2008)
Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski inequality for hypersurfaces in the Anti-de Sitter–Schwarzschild manifold. Commun. Pure Appl. Math. 69(1), 124–144 (2016)
Caffarelli, L.A., Friedman, A.: Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations. J. Differ. Equ. 60(3), 420–433 (1985)
Chang, S.-Y.A., Wang, Y.: On Aleksandrov–Fenchel inequalities for k-convex domains. Milan J. Math. 79(1), 13 (2011)
Chang, S.-Y.A., Wang, Y.: Inequalities for quermassintegrals on k-convex domains. Adv. Math. 248, 335–377 (2013)
Cheeger, J., Naber, A., Valtorta, D.: Critical sets of elliptic equations. arXiv:1207.4236v3
Chen, B.-Y.: On a theorem of Fenchel–Borsuk–Willmore–Chern–Lashof. Math. Ann. 194(1), 19–26 (1971)
Chen, B.-Y.: On the total curvature of immersed manifolds, I: an inequality of Fenchel–Borsuk–Willmore. Am. J. Math. 93(1), 148–162 (1971)
Colding, T.H.: New monotonicity formulas for Ricci curvature and applications. I. Acta Math. 209(2), 229–263 (2012)
Colding, T.H., Minicozzi, W.P.: Monotonicity and its analytic and geometric implications. Proc. Natl. Acad. Sci. 110(48), 19233–19236 (2013)
Colding, T.H., Minicozzi, W.P.: Ricci curvature and monotonicity for harmonic functions. Calc. Var. Partial. Differ. Equ. 49(3), 1045–1059 (2014)
Crasta, G., Fragalà, I., Gazzola, F.: On a long-standing conjecture by Pólya–Szegö and related topics. Z. Angew. Math. Phys. 56(5), 763–782 (2005)
DeTurck, D., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Scie. l’École Norm. Supérieure Ser. 4 14(3), 249–260 (1981)
Enciso, A., Peralta-Salas, D.: Symmetry for an overdetermined boundary problem in a punctured domain. Nonlinear Anal. 70(2), 1080–1086 (2009)
Farina, A., Mari, L., Valdinoci, E.: Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds. Commun. Partial Differ. Equ. 38(10), 1818–1862 (2013)
Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)
Fogagnolo, M., Mazzieri, L., Pinamonti, A.: Geometric aspects of p-capacitary potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(4), 1151–1179 (2019)
Fragalà, I., Gazzola, F.: Partially overdetermined elliptic boundary value problems. J. Differ. Equ. 245(5), 1299–1322 (2008)
Fragalà, I., Gazzola, F., Kawohl, B.: Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Z. 254(1), 117–132 (2006)
Freire, A., Schwartz, F.: Mass-capacity inequalities for conformally flat manifolds with boundary. Commun. Partial Differ. Equ. 39(1), 98–119 (2014)
Garofalo, N., Sartori, E.: Symmetry in exterior boundary value problems for quasilinear elliptic equations via blow-up and a priori estimates. Adv. Differ. Equ. 4(2), 137–161 (1999)
Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)
Guan, P., Li, J.: The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221(5), 1725–1732 (2009)
Hardt, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Nadirashvili, N.: Critical sets of solutions to elliptic equations. J. Differ. Geom. 51(2), 359–373 (1999)
Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30(2), 505–522 (1989)
Huisken, G.: An isoperimetric concept for the mass in general relativity. Video. https://video.ias.edu/node/234. Accessed Mar 2009
Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)
Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)
Hurtado, A., Palmer, V., Ritoré, M.: Comparison results for capacity. Indiana Univ. Math. J. 61(2), 539–555 (2012)
Kellogg, O.D.: Foundations of Potential Theory. Springer, Berlin (1967)
Marques, F.C., Neves, A.: Min–Max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)
Moser, R.: The inverse mean curvature flow and p-harmonic functions. J. Eur. Math. Soc. 9(1), 77–83 (2007)
Payne, L.E., Philippin, G.A.: On some maximum principles involving harmonic functions and their derivatives. SIAM J. Math. Anal. 10(1), 96–104 (1979)
Payne, L.E., Philippin, G.A.: Some overdetermined boundary value problems for harmonic functions. Z. Angew. Math. Phys. 42(6), 864–873 (1991)
Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159
Souc̆ek, J., Souc̆ek, V.: Morse–Sard theorem for real-analytic functions. Comment. Math. Univ. Carol. 13(1), 45–51 (1972)
Urbas, J.I.E.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205(3), 355–372 (1990)
Willmore, T .J.: Mean curvature of immersed surfaces. Ann. Şti. Univ. “All. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 14, 99–103 (1968)
Xiao, J.: P-capacity vs surface-area. Adv. Math. 308, 1318–1336 (2017)
Acknowledgements
The author are grateful to G. Crasta, A. Farina, I. Fragalà, C. Mantegazza, J. Metzger, M. Novaga, and D. Peralta-Salas for useful comments and discussions during the preparation of the paper. The authors are members of Gruppo Nazionale per l’Analisi Matematica, la Probabilitàe le loro Applicazioni (GNAMPA), which is part of the Istituto Nazionale di Alta Matematica (INdAM), and partially funded by the GNAMPA project “Principi di fattorizzazione, formule di monotonia e disuguaglianze geometriche”. The authors would like to thank the anonymous referee for the careful reading of the manuscript as well as for his/her valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Malchiodi.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.