Skip to main content

Advertisement

Log in

Monotonicity formulas in potential theory

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Using the electrostatic potential u due to a uniformly charged body \(\Omega \subset {\mathbb {R}}^n\), \(n\ge 3\), we introduce a family of monotone quantities associated with the level set flow of u. The derived monotonicity formulas are exploited to deduce a new quantitative version of the classical Willmore inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostiniani, V., Fogagnolo, M., Mazzieri, L.: Minkowski inequalities via nonlinear potential theory. arXiv:1906.00322

  2. Agostiniani, V., Fogagnolo, M., Mazzieri, L.: Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature. arXiv:1812.05022

  3. Agostiniani, V., Mazzieri, L.: Riemannian aspects of potential theory. J. Math. Pures Appl. 104(3), 561–586 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agostiniani, V., Mazzieri, L.: Comparing monotonicity formulas for electrostatic potentials and static metrics. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(1), 7–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agostiniani, V., Mazzieri, L.: On the geometry of the level sets of bounded static potentials. Commun. Math. Phys. 355(1), 261–301 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borghini, S., Mascellani, G., Mazzieri, L.: Some sphere theorems in linear potential theory. Trans. Am. Math. Soc. 371(11), 7757–7790 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borghini, S., Mazzieri, L.: On the mass of static metrics with positive cosmological constant: II. arXiv:1711.07024

  8. Borghini, S., Mazzieri, L.: On the mass of static metrics with positive cosmological constant: I. Class. Quantum Gravity 35(12), 125001 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bour, V., Carron, G.: Optimal integral pinching results. Ann. Sci. Éc. Norm. Supér. (4) 48(1), 41–70 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bray, H.L., Miao, P.: On the capacity of surfaces in manifolds with nonnegative scalar curvature. Invent. Math. 172(3), 459–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski inequality for hypersurfaces in the Anti-de Sitter–Schwarzschild manifold. Commun. Pure Appl. Math. 69(1), 124–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A., Friedman, A.: Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations. J. Differ. Equ. 60(3), 420–433 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, S.-Y.A., Wang, Y.: On Aleksandrov–Fenchel inequalities for k-convex domains. Milan J. Math. 79(1), 13 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, S.-Y.A., Wang, Y.: Inequalities for quermassintegrals on k-convex domains. Adv. Math. 248, 335–377 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheeger, J., Naber, A., Valtorta, D.: Critical sets of elliptic equations. arXiv:1207.4236v3

  16. Chen, B.-Y.: On a theorem of Fenchel–Borsuk–Willmore–Chern–Lashof. Math. Ann. 194(1), 19–26 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, B.-Y.: On the total curvature of immersed manifolds, I: an inequality of Fenchel–Borsuk–Willmore. Am. J. Math. 93(1), 148–162 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Colding, T.H.: New monotonicity formulas for Ricci curvature and applications. I. Acta Math. 209(2), 229–263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Colding, T.H., Minicozzi, W.P.: Monotonicity and its analytic and geometric implications. Proc. Natl. Acad. Sci. 110(48), 19233–19236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Colding, T.H., Minicozzi, W.P.: Ricci curvature and monotonicity for harmonic functions. Calc. Var. Partial. Differ. Equ. 49(3), 1045–1059 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crasta, G., Fragalà, I., Gazzola, F.: On a long-standing conjecture by Pólya–Szegö and related topics. Z. Angew. Math. Phys. 56(5), 763–782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. DeTurck, D., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Scie. l’École Norm. Supérieure Ser. 4 14(3), 249–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Enciso, A., Peralta-Salas, D.: Symmetry for an overdetermined boundary problem in a punctured domain. Nonlinear Anal. 70(2), 1080–1086 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farina, A., Mari, L., Valdinoci, E.: Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds. Commun. Partial Differ. Equ. 38(10), 1818–1862 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    Google Scholar 

  26. Fogagnolo, M., Mazzieri, L., Pinamonti, A.: Geometric aspects of p-capacitary potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(4), 1151–1179 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fragalà, I., Gazzola, F.: Partially overdetermined elliptic boundary value problems. J. Differ. Equ. 245(5), 1299–1322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fragalà, I., Gazzola, F., Kawohl, B.: Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Z. 254(1), 117–132 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Freire, A., Schwartz, F.: Mass-capacity inequalities for conformally flat manifolds with boundary. Commun. Partial Differ. Equ. 39(1), 98–119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Garofalo, N., Sartori, E.: Symmetry in exterior boundary value problems for quasilinear elliptic equations via blow-up and a priori estimates. Adv. Differ. Equ. 4(2), 137–161 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guan, P., Li, J.: The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221(5), 1725–1732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hardt, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Nadirashvili, N.: Critical sets of solutions to elliptic equations. J. Differ. Geom. 51(2), 359–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30(2), 505–522 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Huisken, G.: An isoperimetric concept for the mass in general relativity. Video. https://video.ias.edu/node/234. Accessed Mar 2009

  36. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hurtado, A., Palmer, V., Ritoré, M.: Comparison results for capacity. Indiana Univ. Math. J. 61(2), 539–555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kellogg, O.D.: Foundations of Potential Theory. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  40. Marques, F.C., Neves, A.: Min–Max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moser, R.: The inverse mean curvature flow and p-harmonic functions. J. Eur. Math. Soc. 9(1), 77–83 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Payne, L.E., Philippin, G.A.: On some maximum principles involving harmonic functions and their derivatives. SIAM J. Math. Anal. 10(1), 96–104 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Payne, L.E., Philippin, G.A.: Some overdetermined boundary value problems for harmonic functions. Z. Angew. Math. Phys. 42(6), 864–873 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159

  45. Souc̆ek, J., Souc̆ek, V.: Morse–Sard theorem for real-analytic functions. Comment. Math. Univ. Carol. 13(1), 45–51 (1972)

    MathSciNet  Google Scholar 

  46. Urbas, J.I.E.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205(3), 355–372 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Willmore, T .J.: Mean curvature of immersed surfaces. Ann. Şti. Univ. “All. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 14, 99–103 (1968)

    MathSciNet  MATH  Google Scholar 

  48. Xiao, J.: P-capacity vs surface-area. Adv. Math. 308, 1318–1336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author are grateful to G. Crasta, A. Farina, I. Fragalà, C. Mantegazza, J. Metzger, M. Novaga, and D. Peralta-Salas for useful comments and discussions during the preparation of the paper. The authors are members of Gruppo Nazionale per l’Analisi Matematica, la Probabilitàe le loro Applicazioni (GNAMPA), which is part of the Istituto Nazionale di Alta Matematica (INdAM), and partially funded by the GNAMPA project “Principi di fattorizzazione, formule di monotonia e disuguaglianze geometriche”. The authors would like to thank the anonymous referee for the careful reading of the manuscript as well as for his/her valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Mazzieri.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostiniani, V., Mazzieri, L. Monotonicity formulas in potential theory. Calc. Var. 59, 6 (2020). https://doi.org/10.1007/s00526-019-1665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1665-2

Mathematics Subject Classification

Navigation