Skip to main content
Log in

The fast signal diffusion limit in Keller–Segel(-fluid) systems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper deals with convergence of solutions to a class of parabolic Keller–Segel systems, possibly coupled to the (Navier–)Stokes equations in the framework of the full model

$$\begin{aligned} \left\{ \begin{array}{lll} \partial _t n_\varepsilon + u_\varepsilon \cdot \nabla n_\varepsilon &{}=&{} \Delta n_\varepsilon - \nabla \cdot \Big ( n_\varepsilon S(x,n_\varepsilon ,c_\varepsilon )\cdot \nabla c_\varepsilon \Big ) + f(x,n_\varepsilon ,c_\varepsilon ), \\ \varepsilon \partial _t c_\varepsilon + u_\varepsilon \cdot \nabla c_\varepsilon &{}=&{} \Delta c_\varepsilon - c_\varepsilon + n_\varepsilon , \\ \partial _t u_\varepsilon + \kappa (u_\varepsilon \cdot \nabla )u_\varepsilon &{}=&{} \Delta u_\varepsilon + \nabla P_\varepsilon + n_\varepsilon \nabla \phi , \qquad \nabla \cdot u_\varepsilon =0 \end{array}\right. \end{aligned}$$

to solutions of the parabolic–elliptic counterpart formally obtained on taking \(\varepsilon {\searrow } 0\). In smoothly bounded physical domains \(\Omega \subset {{\mathbb {R}}}^{N}\) with \(N\ge 1\), and under appropriate assumptions on the model ingredients, we shall first derive a general result which asserts certain strong and pointwise convergence properties whenever asserting that supposedly present bounds on \(\nabla c_\varepsilon \) and \(u_\varepsilon \) are bounded in \(L^\lambda ((0,T);L^q(\Omega ))\) and in \(L^\infty ((0,T);L^r(\Omega ))\), respectively, for some \(\lambda \in (2,\infty ]\), \(q>N\) and \(r>\max \{2,N\}\) such that \(\frac{1}{\lambda }+\frac{N}{2q}<\frac{1}{2}\). To our best knowledge, this seems to be the first rigorous mathematical result on a fast signal diffusion limit in a chemotaxis-fluid system. This general result will thereafter be concretized in the context of two examples: firstly, for an unforced Keller–Segel–Navier–Stokes system we shall establish a statement on global classical solutions under suitable smallness conditions on the initial data, and show that these solutions approach a global classical solution to the respective parabolic–elliptic simplification. We shall secondly derive a corresponding convergence property for arbitrary solutions to fluid-free Keller–Segel systems with logistic source terms, which in spatially one-dimensional settings turn out to allow for a priori estimates compatible with our general theory. Building on the latter in conjunction with a known result on emergence of large densities in the associated parabolic–elliptic limit system, we will finally discover some quasi-blowup phenomenon for the fully parabolic Keller–Segel system with logistic source and suitably small parameter \(\varepsilon >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Biler, P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Biler, P., Karch, G., Laurençot, P., Nadzieja, T.: The \(8\pi \)-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29, 1563–1583 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Blanchet, A., Carrillo, J.A., Masmoudi, N.: Infinite time aggregation for the critical Patlak–Keller–Segel model in \({\mathbb{R}}^2\). Commun. Pure Appl. Math. 61, 1449–1481 (2008)

    MATH  Google Scholar 

  4. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 2006, 1–32 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55(107), 39 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Corrias, L., Perthame, B.: Asymptotic decay for the solutions of the parabolic–parabolic Keller–Segel chemotaxis system in critical spaces. Math. Comput. Model. 47, 755–764 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Duan, R., Xiang, Z.: A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion. Int. Math. Res. Not. 2014, 1833–1852 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  10. Giga, Y.: Solutions for semilinear parabolic equations in \(L_p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    MATH  Google Scholar 

  11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  13. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Super. Pisa 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Kang, K., Stevens, A.: Blowup and global solutions in a chemotaxis-growth system. Nonlinear Anal. TMA 135, 57–72 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Kavallaris, N., Souplet, Ph.: Grow-up rate and refined asymptotics for a two-dimensional Patlak–Keller–Segel model in a disk. SIAM J. Math. Anal. 40, 1852–1881 (2008/09)

    MathSciNet  MATH  Google Scholar 

  17. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–417 (1970)

    MathSciNet  MATH  Google Scholar 

  18. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equ. 37(1–3), 298–318 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Kiselev, A., Xu, X.: Suppression of chemotactic explosion by mixing. Arch. Ration. Mech. Anal. 222, 1077–1112 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type, vol. 23, American Mathematical Soc, Providence, RI (1968)

  21. Liu, J., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Math. Comput. 87, 1165–1189 (2018)

    MATH  Google Scholar 

  22. Li, T., Suen, A., Winkler, M., Xue, C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Model Methods Appl. Sci. 25, 721–746 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Lieberman, G.: Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions. Ann. Mat. Pura Appl. 148, 77–99 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Lions, P.L.: Résolution de problèmes elliptiques quasilinéaires. Arch. Ration. Mech. Anal. 74, 335–353 (1980)

    MATH  Google Scholar 

  25. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Nonlinéaire 31, 851–875 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Mizoguchi, N., Winkler, M.: Finite-time blow-up in the two-dimensional parabolic Keller–Segel system (preprint)

  27. Nadin, G., Perthame, B., Ryzhik, L.: Traveling waves for the Keller–Segel system with Fisher birth terms. Interfaces Free Bound. 10, 517–538 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Nagai, T.: Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Nagai, T., Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30, 463–497 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Naito, Y., Suzuki, T.: Self-similarity in chemotaxis systems. Colloq. Math. 111, 11–34 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Porzio, M.M., Vespri, V.: Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103(1), 146–178 (1993)

    MATH  Google Scholar 

  34. Senba, T.: Type II blowup of solutions to a simplified Keller–Segel system in two dimensions. Nonlinear Anal. 66, 1817–1839 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Sohr, H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  36. Solonnikov, V.A.: On Schauder estimates for the evolution generalized Stokes problem. In: Hyperbolic Problems and Regularity Questions, Trends in Mathematics, Birkhäuser Verlag, pp. 197–205 (2007)

  37. Souplet, Ph., Winkler, M.: Blow-up profiles for the parabolic–elliptic Keller–Segel system in dimensions \(n\ge 3\) (preprint)

  38. Suzuki, T.: Free Energy and Self-Interacting Particles. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  39. Suzuki, T.: Exclusion of boundary blowup for 2D chemotaxis system provided with Dirichlet boundary condition for the Poisson part. J. Math. Pures Appl. 100, 347–367 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Tao, Y., Winkler, M.: Dominance of chemotaxis in a chemotaxis–haptotaxis model. Nonlinearity 27, 1225–1239 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis–fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32(6), 849–877 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    MATH  Google Scholar 

  44. Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27, 2745–2780 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis–Navier–Stokes system with subcritical sensitivity. Annali della Scuola Norm. Super. di Pisa-Classe di Sci. 18, 421–466 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Wang, Y., Winkler, M., Xiang, Z.: The small-convection limit in a two-dimensional chemotaxis–Navier–Stokes system. Math. Z. 289, 71–108 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Winkler, M.: Aggregation versus global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MATH  Google Scholar 

  51. Winkler, M.: Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013). arXiv:1112.4156v1

    MathSciNet  MATH  Google Scholar 

  53. Winkler, M.: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24, 809–855 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Winkler, M.: Blow-up profiles and life beyond blow-up in the fully parabolic Keller–Segel system (preprint)

  56. Winkler, M.: How unstable is spatial homogeneity in Keller–Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic–elliptic cases. Math. Ann. 373, 1237–1282 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  58. Wu, S., Wang, J., Shi, J.: Dynamics and pattern formation of a diffusive predator–prey model with predator-taxis. Math. Models Methods Appl. Sci. 28, 2275–2312 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referee for his/her detailed comments and valuable suggestions, which greatly improved the manuscript. Y. Wang was supported by the Applied Fundamental Research Plan of Sichuan Province (No. 2018JY0503) and Xihua Scholars Program of Xihua University. M. Winkler acknowledges support of the Deutsche Forschungsgemeinschaft (Project No. 411007140, GZ: WI 3707/5-1). Z. Xiang was partially supported by the NNSF of China under Grants 11571063 and 11771045, and by the Fundamental Research Funds for the Central Universities (No. ZYGX2019J096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyin Xiang.

Additional information

Communicated by M. Struwe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Winkler, M. & Xiang, Z. The fast signal diffusion limit in Keller–Segel(-fluid) systems. Calc. Var. 58, 196 (2019). https://doi.org/10.1007/s00526-019-1656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1656-3

Mathematics Subject Classification

Navigation