Skip to main content
Log in

Singular support of minimizers of the causal variational principle on the sphere

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The support of minimizing measures of the causal variational principle on the sphere is analyzed. It is proven that in the case \(\tau > \sqrt{3}\), the support of every minimizing measure is contained in a finite number of real analytic curves which intersect at a finite number of points. In the case \(\tau > \sqrt{6}\), the support is proven to have Hausdorff dimension at most 6 / 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal. 209(3), 1055–1088 (2013). arXiv:1210.6795 [math.AP]

    Article  MathSciNet  Google Scholar 

  2. Bilyk, D., Dai, F.: Geodesic distance Riesz energy on the sphere. Trans. Am. Math. Soc. 372(5), 3141–3166 (2019). arXiv:1612.08442 [math.CA]

    Article  MathSciNet  Google Scholar 

  3. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36. Springer, Berlin (1998)

    Book  Google Scholar 

  4. Burchard, A., Choksi, R., Topaloglu, I.: Nonlocal shape optimization via interactions of attractive and repulsive potentials. Indiana Univ. Math. J. 67(1), 375–395 (2018). arXiv:1512.07282 [math.AP]

    Article  MathSciNet  Google Scholar 

  5. Carrillo, J.A., Delgadino, M.G., Mellet, A.: Regularity of local minimizers of the interaction energy via obstacle problems. Commun. Math. Phys. 343(3), 747–781 (2016). arXiv:1406.4040 [math.AP]

    Article  MathSciNet  Google Scholar 

  6. Carrillo, J.A., Figalli, A., Patacchini, F.S.: Geometry of minimizers for the interaction energy with mildly repulsive potentials. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34(5), 1299–1308 (2017). arXiv:1607.08660 [math.AP]

    Article  MathSciNet  Google Scholar 

  7. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007). arXiv:math/0607446 [math.MG]

    Article  MathSciNet  Google Scholar 

  8. Finster, F.: Causal variational principles on measure spaces. J. Reine Angew. Math. 646, 141–194 (2010). arXiv:0811.2666 [math-ph]

    MathSciNet  MATH  Google Scholar 

  9. Finster, F.: The Continuum Limit of Causal Fermion Systems. Fundamental Theories of Physics, vol. 186. Springer, Berlin (2016). arXiv:1605.04742 [math-ph]

    Book  Google Scholar 

  10. Finster, F.: Causal fermion systems: a primer for Lorentzian geometers. J. Phys. Conf. Ser. 968, 012004 (2018). arXiv:1709.04781 [math-ph]

    Article  MathSciNet  Google Scholar 

  11. Finster, F., Grotz, A., Schiefeneder, D.: Causal fermion systems: a quantum space-time emerging from an action principle. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory and Gravity, pp. 157–182. Birkhäuser Verlag, Basel (2012). arXiv:1102.2585 [math-ph]

    Chapter  Google Scholar 

  12. Finster, F., Kleiner, J.: Causal fermion systems as a candidate for a unified physical theory. J. Phys. Conf. Ser. 626, 012020 (2015). arXiv:1502.03587 [math-ph]

    Article  Google Scholar 

  13. Finster, F., Kleiner, J.: A Hamiltonian formulation of causal variational principles. Calc. Var. Partial Differ. Equ. 56:73(3), 33 (2017). arXiv:1612.07192 [math-ph]

    MathSciNet  MATH  Google Scholar 

  14. Finster, F., Schiefeneder, D.: On the support of minimizers of causal variational principles. Arch. Ration. Mech. Anal. 210(2), 321–364 (2013). arXiv:1012.1589 [math-ph]

    Article  MathSciNet  Google Scholar 

  15. Frank, R.L., Lieb, E.H.: A “liquid–solid” phase transition in a simple model for swarming, based on the “no flat-spots” theorem for subharmonic functions. Indiana Univ. Math. J. 67(4), 1547–1569 (2018). arXiv:1607.07971 [math.AP]

    Article  MathSciNet  Google Scholar 

  16. Prechtl, L.: Untersuchung der Minimierer des kausalen Variationsprinzips auf der Sphäre, Masterarbeit Mathematik. Universität Regensburg, Regensburg (2016)

    Google Scholar 

  17. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Tobias Kaiser for helpful discussions. We are grateful to the referee for helpful comments on the manuscript. F.F. would like to thank the Max Planck Institute for Mathematics in the Sciences in Leipzig for hospitality while working on the manuscript. H. vdM.’s work is partially funded by the Excellence Initiative of the German federal and state governments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko von der Mosel.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bäuml, L., Finster, F., Schiefeneder, D. et al. Singular support of minimizers of the causal variational principle on the sphere. Calc. Var. 58, 205 (2019). https://doi.org/10.1007/s00526-019-1652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1652-7

Mathematics Subject Classification

Navigation