Skip to main content

Advertisement

Log in

Affine isoperimetric inequalities for intersection mean ellipsoids

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

A variational formula for Lutwak’s dual affine quermassintegrals \({\widetilde{\Lambda }}_{j}\) of convex bodies in \({\mathbb {R}}^n\) is established when \(1\le j\le n-1.\) Using new ellipsoids associated with the intersection functions of convex bodies, we prove several sharp affine isoperimetric inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351–359 (1991)

    Article  MathSciNet  Google Scholar 

  2. Burago, Y., Zalgaller, V.: Geometric Inequalities. Springer, Berlin (1988)

    Book  Google Scholar 

  3. Dann, S., Paouris, G., Pivovarov, P.: Bounding marginal densities via affine isoperimetry. Proc. Lond. Math. Soc. 113, 140–162 (2016)

    Article  MathSciNet  Google Scholar 

  4. Furstenberg, H., Tzkoni, I.: Spherical harmonics and integral geometry. Isr. J. Math. 10, 327–338 (1971)

    Article  Google Scholar 

  5. Gardner, R.: Geometric Tomography. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  6. Grinberg, E.: Isoperimetric inequalities and identities for \(k\)-dimensional cross-sections of convex bodies. Math. Ann. 291, 75–86 (1991)

    Article  MathSciNet  Google Scholar 

  7. Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  8. Hu, J., Xiong, G., Zou, D.: On mixed \(L_p\) John ellipsoids. Adv. Geom. 19, 297–312 (2019)

    Article  MathSciNet  Google Scholar 

  9. Lutwak, E.: Selected affine isoperimetric inequalities. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 151–176. North-Holland, Amsterdam (1993)

    Chapter  Google Scholar 

  10. Lutwak, E.: Mean dual and harmonic cross-sectional measures. Ann. Mat. Pura Appl. 119, 139–148 (1979)

    Article  MathSciNet  Google Scholar 

  11. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  MathSciNet  Google Scholar 

  12. Lutwak, E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    Article  MathSciNet  Google Scholar 

  13. Lutwak, E.: The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  Google Scholar 

  14. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)

    Article  Google Scholar 

  15. Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \(L_{p}\). J. Differ. Geom. 68, 159–184 (2004)

    Article  Google Scholar 

  16. Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for isotropic measures. Am. J. Math. 129, 1711–1723 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lutwak, E., Yang, D., Zhang, G.: A volume inequality for polar bodies. J. Differ. Geom. 84, 163–178 (2010)

    Article  MathSciNet  Google Scholar 

  18. Ren, D.: Topics in Integral Geometry. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  19. Santaló, L.: Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Schneider, R.: Convex bodies: the Brunn–Minkowski theory. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  21. Schuster, F., Weberndorfer, M.: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92, 263–283 (2012)

    Article  MathSciNet  Google Scholar 

  22. Xiong, G.: Extremum problems for the cone volume functional of convex polytopes. Adv. Math. 225, 3214–3228 (2010)

    Article  MathSciNet  Google Scholar 

  23. Zhang, G.: New affine isoperimetric inequalities. In: International Conference on Chinese Mathematicians (ICCM ), vol. 265, pp. 239–267 (2007)

  24. Zou, D., Xiong, G.: Orlicz–John ellipsoids. Adv. Math. 265, 132–168 (2014)

    Article  MathSciNet  Google Scholar 

  25. Zou, D., Xiong, G.: Orlicz–Legendre ellipsoids. J. Geom. Anal. 26, 2474–2502 (2016)

    Article  MathSciNet  Google Scholar 

  26. Zou, D., Xiong, G.: New affine inequalities and projection mean ellipsoids. Calc. Var. Partial Differ. Equ. 58, 18 (2019). Art. 44

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was done when we were visiting Chern Institute of Mathematics in 2017. We would like to thank Professors Zhang Weiping and Feng Huitao and the institute for their hospitality and financial support. We are grateful to the referee for many suggested improvements and for the thoughtful and careful reading given to the original draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Xiong.

Additional information

Communicated by A.Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the authors is supported by NSFC No.11871373 and the China Postdoctoral Science Foundation No.2019M651330.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Xiong, G. & Zou, D. Affine isoperimetric inequalities for intersection mean ellipsoids. Calc. Var. 58, 191 (2019). https://doi.org/10.1007/s00526-019-1643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1643-8

Mathematics Subject Classification

Navigation