Skip to main content

Existence of entire solutions of Monge–Ampère equations with prescribed asymptotic behavior


We prove the existence of entire solutions of the Monge–Ampère equations with prescribed asymptotic behavior at infinity of the plane, which was left unsolved by Caffarelli–Li in 2003. The special difficulty of the problem in dimension two is due to the global logarithmic term in the asymptotic expansion of solutions at infinity. Furthermore, we give a PDE proof of the characterization of the space of solutions of the Monge–Ampère equation \(\det \nabla ^2 u=1\) with \(k\ge 2\) singular points, which was established by Gálvez–Martínez–Mira in 2005. We also obtain the existence of solutions in higher dimensional cases with general right hand sides.

This is a preview of subscription content, access via your institution.


  1. Bao, J., Li, H., Zhang, L.: Monge–Ampère equation on exterior domains. Calc. Var. Partial Differ. Equ. 52, 39–63 (2015)

    Article  Google Scholar 

  2. Caffarelli, L.A.: Topics in PDEs: The Monge–Ampère equation. Graduate course. Courant Institute, New York University (1995)

  3. Caffarelli, L.A., Li, Y.Y.: An extension to a theorem of Jörgens, Calabi, and Pogorelov. Commun. Pure Appl. Math. 56, 549–583 (2003)

    Article  Google Scholar 

  4. Caffarelli, L.A., Li, Y.Y.: A Liouville theorem for solutions of the Monge–Ampère equation with periodic data. Ann. Inst. H. Poincar Anal. Non Linaire 21, 97–120 (2004)

    MATH  Google Scholar 

  5. Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J. 5, 105–126 (1958)

    Article  Google Scholar 

  6. Cheng, S.Y., Yau, S.T.: Complete affine hypersurfaces. I. The completeness of affine metrics. Commun. Pure Appl. Math. 39(6), 839–866 (1986)

    Article  MathSciNet  Google Scholar 

  7. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  8. Ferrer, L., Martínez, A., Milán, F.: The space of parabolic affine spheres with fixed compact boundary. Monatsh. Math. 130(1), 19–27 (2000)

    Article  MathSciNet  Google Scholar 

  9. Figalli, A.: The Monge–Ampère Equation and its Applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2017)

    Book  Google Scholar 

  10. Gálvez, J.A., Martínez, A., Mira, P.: The space of solutions to the Hessian one equation in the finitely punctured plane. J. Math. Pures Appl. (9) 84(12), 1744–1757 (2005)

    Article  MathSciNet  Google Scholar 

  11. Gutierrez, C.E.: The Monge–Ampère Equation. Progress in Nonlinear Differential Equations and Applications, vol. 44. Birkhauser Boston Inc., Boston (2001)

    Google Scholar 

  12. Jörgens, K.: Über die Lösungen der Differentialgleichung \(rt-s^2=1\). Math. Ann. 127, 130–134 (1954)

    Article  MathSciNet  Google Scholar 

  13. Jörgens, K.: Harmonische Abbildungen und die Differentialgleichung \(rt-s^2=1\). Math. Ann. 129, 330–344 (1955)

    Article  MathSciNet  Google Scholar 

  14. Jost, J., Xin, Y.L.: Some aspects of the global geometry of entire space-like submanifolds. Results Math. 40, 233–245 (2001)

    Article  MathSciNet  Google Scholar 

  15. Jin, T., Xiong, J.: A Liouville theorem for solutions of degenerate Monge–Ampère equations. Commun. Partial Differ. Equ. 39, 306–320 (2014)

    Article  Google Scholar 

  16. Jin, T., Xiong, J.: Solutions of some Monge–Ampère equations with isolated and line singularities. Adv. Math. 289, 114–141 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, Y.Y.: Some existence results of fully nonlinear elliptic equations of Monge–Ampère type. Commun. Pure Appl. Math. 43, 233–271 (1990)

    Article  Google Scholar 

  18. Li, Y.Y., Lu, S.: Existence and nonexistence to exterior Dirichlet problem for Monge–Ampère equation. To appear in Calculus of Variatoins and PDEs

  19. Nitsche, J.C.C.: Elementary proof of Bernsteins theorem on minimal surfaces. Ann. Math. 66, 543–544 (1957)

    Article  MathSciNet  Google Scholar 

  20. Pogorelov, A.V.: On the improper convex affine hyperspheres. Geom. Dedicata 1, 33–46 (1972)

    Article  MathSciNet  Google Scholar 

  21. Teixeira, E.V., Zhang, L.: Global Monge–Ampère equation with asymptotically periodic data. Indiana Univ. Math. J. 65, 399–422 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jingang Xiong.

Additional information

Communicated by O. Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors are supported in part by the key project NSFC 11631002, and J. Xiong is also supported in part by NSFC 11501034 and 11571019.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Xiong, J. & Zhou, Z. Existence of entire solutions of Monge–Ampère equations with prescribed asymptotic behavior. Calc. Var. 58, 193 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Mathematics Subject Classification