Skip to main content

Advertisement

Log in

Factorizations and Hardy’s type identities and inequalities on upper half spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Motivated and inspired by the improved Hardy inequalities studied in their well-known works by Brezis and Vázquez (Rev Mat Univ Complut Madrid 10:443–469, 1997) and Brezis and Marcus (Ann Scuola Norm Sup Pisa Cl Sci 25(1–2):217–237, 1997), we establish in this paper several identities that imply many sharpened forms of the Hardy type inequalities on upper half spaces \(\left\{ x_{N}>0\right\} \). We set up these results for the distance to the origin, the distance to the boundary of any strip \( \mathbb {R} ^{N-1}\times \left( 0,R\right) \) and the distance to the hyperplane \(\left\{ x_{N}=0\right\} \), using both the usual full gradient and radial derivative (in the case of distance to the origin) or only the partial derivative \(\frac{\partial u}{\partial x_{N}}\) (in the case of distance to the boundary of the strip or hyperplane). One of the applications of our main results is that when \(\Omega \) is the strip \(\mathbb {R}^{N-1}\times \left( 0,2R\right) \), the bound \(\lambda \left( \Omega \right) \) given by Brezis and Marcus in Brezis and Marcus (1997) can be improved to \(\frac{z_{0}^{2}}{R^{2}}\), where \(z_{0} =2.4048 \ldots \) is the first zero of the Bessel function \(J_{0}\left( z\right) \). Our approach makes use of the notion of Bessel pairs introduced by Ghoussoub and Moradifam (Math Ann 349(1):1–57, 2011) and (Functional inequalities: new perspectives and new applications. Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2013) and the method of factorizations of differential operators. In particular, our identities and inequalities offer sharpened and more precise estimates of the second remainder term in the existing Hardy type inequalities on upper half spaces in the literature, including the Hardy-Sobolev-Maz’ya type inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi Chaudhuri, N., Ramaswamy, M.: An improved Hardy-Sobolev inequality and its application. Proc. Am. Math. Soc. 130(2), 489–505 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avkhadiev, F.G., Wirths, K.-J.: Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM Z. Angew. Math. Mech. 87(8–9), 632–642 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balinsky, A.A., Evans, W.D., Lewis, R.T.: The Analysis and Geometry of Hardy’s Inequality, p. xv+263. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  4. Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved \(\mathit{L}^{\mathit{p}}\) Hardy inequalities with best constants. Trans. Am. Math. Soc. 356(6), 2169–2196 (2004)

    Article  MATH  Google Scholar 

  5. Beckner, W.: On the Grushin operator and hyperbolic symmetry. Proc. Am. Math. Soc. 129, 1233–1246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beckner, W.: On Hardy-Sobolev Embedding. arXiv:0907.3932

  7. Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Math. 24(1), 177–209 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benguria, R.D., Frank, R.L., Loss, M.: The sharp constant in the Hardy-Sobolev-Maz’ya inequality in the three dimensional upper half-space. Math. Res. Lett. 15(4), 613–622 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bogdan, K., Dyda, B., Kim, P.: Hardy inequalities and non-explosion results for semigroups. Potential Anal. 44, 229–247 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 25(1–2), 217–237 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Marcus, M., Shafrir, I.: Extremal functions for Hardy’s inequality with weight. J. Funct. Anal. 171(1), 177–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezis, H., Vázquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10, 443–469 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Cabré, X., Ros-Oton, X.: Sobolev and isoperimetric inequalities with monomial weights. J. Differ. Equ. 255(11), 4312–4336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cazacu, C.: On Hardy inequalities with singularities on the boundary. C. R. Math. Acad. Sci. Paris 349(5–6), 273–277 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davies, E.B.: The Hardy constant. Quart. J. Math. 46, 417–431 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duy, N.T., Lam-Hoang, N., Triet, N.A.: Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations. J. Spectr. Theory, to appear

  17. Fall, M.M., Musina, R.: Hardy-Poincaré inequalities with boundary singularities. Proc. R. Soc. Edinburgh Sect. A 142(4), 769–786 (2012)

    Article  MATH  Google Scholar 

  18. Filippas, S., Maz’ya, V., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. Partial Differ. Equ. 25(4), 491–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filippas, S., Tertikas, A., Tidblom, J.: On the structure of Hardy-Sobolev-Maz’ya inequalities. J. Eur. Math. Soc. 11(6), 1165–1185 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frank, R.L., Loss, M.: Hardy-Sobolev-Maz’ya inequalities for arbitrary domains. J. Math. Pures Appl. 97(1), 39–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255(12), 3407–3430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frank, R.L., Seiringer, R.: Sharp Fractional Hardy Inequalities in Half-Spaces. Around the Research of Vladimir Maz’ya. I, vol. 11, pp. 161–167. Springer, New York (2010)

    MATH  Google Scholar 

  23. Gazzola, F., Grunau, H.-C., Mitidieri, E.: Hardy inequalities with optimal constants and remainder terms. Trans. Am. Math. Soc. 356(6), 2149–2168 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gesztesy, F., Littlejohn, L.L.: Factorizations and Hardy-Rellich-type inequalities. In: Gesztesy F., Hanche-Olsen H., Jakobsen E., Lyubarskii Y., Risebro N., Seip K. (eds.) Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Hedge Holden Anniversary Volume, EMS Congress Reports, to appear; arXiv:1701.08929

  25. Gesztesy, F., Littlejohn, L., Michael, I., Pang, M.: Radial and logarithmic refinements of Hardy’s inequality. St. Petersburg Math. J., to appear

  26. Gesztesy, F., Pittner, L.: A generalization of the virial theorem for strongly singular potentials. Rep. Math. Phys. 18, 149–162 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghoussoub, N., Moradifam, A.: Bessel pairs and optimal Hardy and Hardy-Rellich inequalities. Math. Ann. 349(1), 1–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ghoussoub, N., Moradifam, A.: Functional Inequalities: New Perspectives and New Applications. Mathematical Surveys and Monographs, vol. 187, pp. xxiv+299. American Mathematical Society, Providence (2013)

  29. Goldstein, J.A., Kombe, I., Yener, A.: A unified approach to weighted Hardy type inequalities on Carnot groups. Discrete Contin. Dyn. Syst. 37(4), 2009–2021 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy’s inequality. J. Funct. Anal. 189(2), 539–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ioku, N., Ishiwata, M., Ozawa, T.: Sharp remainder of a critical Hardy inequality. Arch. Math. 106(1), 65–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kufner, A., Maligranda, L., Persson, L.-E.: The prehistory of the Hardy inequality. Am. Math. Mon. 113(8), 715–732 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality. About its History and Some Related Results. Vydavatelský Servis, Pilsen (2007)

    MATH  Google Scholar 

  34. Kufner, A., Persson, L.-E., Samko, N.: Weighted Inequalities of Hardy Type, 2nd edn, p. xx+459. World Scientific Publishing Co. Pte. Ltd., Hackensack (2017)

    Book  MATH  Google Scholar 

  35. Lam, N.: A note on Hardy inequalities on homogeneous groups. Potential Anal. (2018). https://doi.org/10.1007/s11118-018-9717-3

    Article  Google Scholar 

  36. Lam, N.: Hardy and Hardy-Rellich type inequalities with Bessel pairs. Ann. Acad. Sci. Fenn. Math. 43, 211–223 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lam, N., Lu, G., Zhang, L.: Geometric Hardy’s inequalities with general distance functions, to appear

  38. Li, J., Lu, G., Yang, Q.: Fourier analysis and optimal Hardy-Adams inequalities on hyperbolic spaces of any even dimension. Adv. Math. 333, 350–385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, J., Lu, G., Yang, Q.-H.: Sharp Adams and Hardy-Adams inequalities of any fractional order on hyperbolic spaces of all dimensions. Tran. Amer. Math. Soc. (to appear)

  40. Liu, H.-X., Luan, J.-W.: Hardy-type inequalities on a half-space in the Heisenberg group. J. Inequal. Appl. 2013, 291 (2013). 7 pp

    Article  MathSciNet  MATH  Google Scholar 

  41. Lu, G., Yang, Q.: A sharp Trudinger-Moser inequality on any bounded and convex planar domain. Calc. Var. Partial Differ. Equ. 55(6), 16 (2016). Art. 153

    Article  MathSciNet  MATH  Google Scholar 

  42. Lu, G., Yang, Q.: Sharp Hardy-Adams inequalities for bi-Laplacian on hyperbolic space of dimension four. Adv. Math. 319, 567–598 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lu, G., Yang, Q.: Paneitz operators and Hardy-Sobolev-Maz’ya inequalities for higher order derivatives on half spaces. Am. J. Math. 141 (2019). arXiv:1703.08171, to appear

  44. Lu, G., Yang, Q.: Green’s functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy-Sobolev-Maz’ya inequalities on half spaces, arXiv:1903.10365

  45. Lu, G., Yang, Q.: Sharp Hardy-Sobolev-Maz’ya, Adams and Hardy-Adams inequalities on the Siegel domain and complex hyperbolic spaces, Preprint (2019)

  46. Luan, J.-W., Yang, Q.-H.: A Hardy type inequality in the half-space on \( \mathbb{R} ^{n}\) and Heisenberg group. J. Math. Anal. Appl. 347(2), 645–651 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Machihara, S., Ozawa, T., Wadade, H.: Remarks on the Hardy type inequalities with remainder terms in the framework of equalities. Adv. Stud. Pure Math., to appear

  48. Marcus, M., Mizel, V.J., Pinchover, Y.: On the best constant for Hardy’s inequality in \( \mathbb{R} ^{n}\). Trans. Am. Math. Soc. 350(8), 3237–3255 (1998)

    Article  MATH  Google Scholar 

  49. Masmoudi, N.: About the Hardy Inequality, An Invitation to Mathematics: From Competitions to Research, edited by Dierk Schleicher, pp. 165–180. Springer, Malte Lackmann (2011)

    Book  Google Scholar 

  50. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. 2nd, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, pp. xxviii+866. Springer, Heidelberg (2011)

  51. Maz’ya, V., Shaposhnikova, T.: A Collection of Sharp Dilation Invariant Integral Inequalities for Differentiable Functions. Sobolev Spaces in Mathematics. I, 8th edn, pp. 223–247. Springer, New York (2009)

    MATH  Google Scholar 

  52. Mitidieri, È.: A simple approach to Hardy inequalities. (Russian). Mat. Zametki 67(4), 563–572 (2000). translation in Math. Notes 67 (2000), No. 3-4, 479–486

  53. Nazarov, A.I.: Hardy-Sobolev inequalities in a cone. J. Math. Sci. 132(4), 419–427 (2006)

    Article  MathSciNet  Google Scholar 

  54. Nguyen, V.H.: Sharp weighted Sobolev and Gagliardo-Nirenberg inequalities on half-spaces via mass transport and consequences. Proc. Lond. Math. Soc. 111(1), 127–148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series, vol. 219, p. xii+333. Longman Scientific & Technical, Harlow (1990)

    MATH  Google Scholar 

  56. Ruzhansky, M., Sabitbek, B., Suragan, D.: Subelliptic geometric Hardy type inequalities on half-spaces and convex domains. arXiv:1806.06226

  57. Ruzhansky, M., Yessirkegenov, N.: Factorizations and Hardy-Rellich inequalities on stratified groups. arXiv:1706.05108

  58. Sano, M., Takahashi, F.: Scale invariance structures of the critical and the subcritical Hardy inequalities and their improvements. Calc. Var. Partial Differ. Equ. 56(3), 14 (2017). Art. 69

    Article  MathSciNet  MATH  Google Scholar 

  59. Su, D., Yang, Q.-H.: On the best constants of Hardy inequality in \(\mathbb{R} ^{n-k}\times \left( \mathbb{R} _{+}\right) ^{k}\) and related improvements. J. Math. Anal. Appl. 389(1), 48–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tidblm, J.: A Hardy inequality in the half-space. J. Funct. Anal. 221, 482–492 (2005)

    Article  MathSciNet  Google Scholar 

  61. Wang, G., Ye, D.: A Hardy-Moser-Trudinger inequality. Adv. Math. 230(1), 294–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang, Z., Willem, M.: Caffarelli-Kohn-Nirenberg inequalities with remainder terms. J. Funct. Anal. 203(2), 550–568 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, X.: Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Commun. Pure Appl. Anal. 18(5), 2717–2733 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhen Lu or Lu Zhang.

Additional information

Communicated by H.Brezis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

N. L. was partially supported by a fellowship from the Pacific Institute for the Mathematical Sciences. G. L. was partially supported by a Grant from the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, N., Lu, G. & Zhang, L. Factorizations and Hardy’s type identities and inequalities on upper half spaces. Calc. Var. 58, 183 (2019). https://doi.org/10.1007/s00526-019-1633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1633-x

Mathematics Subject Classification

Navigation