Skip to main content
Log in

Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove that every probability measure \(\mu \) satisfying the stationary Fokker–Planck–Kolmogorov equation obtained by a \(\mu \)-integrable perturbation v of the drift term \(-x\) of the Ornstein–Uhlenbeck operator is absolutely continuous with respect to the corresponding Gaussian measure \(\gamma \) and for the density \(f=d\mu /d\gamma \) the integral of \(f |\log (f+1)|^\alpha \) against \(\gamma \) is estimated via \(\Vert v\Vert _{L^1(\mu )}\) for all \(\alpha <1/4\), which is a weakened \(L^1\)-analog of the logarithmic Sobolev inequality. This yields that stationary measures of infinite-dimensional diffusions whose drifts are integrable perturbations of \(-x\) are absolutely continuous with respect to Gaussian measures. A generalization is obtained for equations on Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Figalli, A.: Surface measures and convergence of the Ornstein–Uhlenbeck semigroup in Wiener spaces. Ann. Fac. Sci. Toulouse Math. (6) 20(2), 407–438 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. Lect. Notes Math. 2062, 1–155 (2013)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Miranda Jr., M., Maniglia, S., Pallara, D.: BV functions in abstract Wiener spaces. J. Funct. Anal. 258, 785–813 (2010)

    Article  MathSciNet  Google Scholar 

  4. Arnaudon, M., Thalmaier, A., Wang, F.-Y.: Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull. Sci. Math. 130(3), 223–233 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bogachev, V.I.: Gaussian Measures. American Mathematical Society, Providence (1998)

    Book  Google Scholar 

  6. Bogachev, V.I.: Differentiable Measures and the Malliavin Calculus. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  7. Bogachev, V.I.: Weak Convergence of Measures. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  8. Bogachev, V.I.: The Ornstein–Uhlenbeck operators and semigroups. Uspehi Matem. Nauk. 73(2), 3–74 (2018). (in Russian); English transl.: Russian Math. Surveys 73:2 (2018)

  9. Bogachev, V.I., Kolesnikov, A.V.: The Monge–Kantorovich problem: achievements, connections, and perspectives. Uspehi Matem. Nauk. 67(5), 3–110 (2012). (in Russian); English transl.: Russian Math. Surveys 67:5, 785–890 (2012)

  10. Bogachev, V.I., Kosov, E.D., Popova, S.N.: A new approach to Nikolskii–Besov classes. arXiv:1707.06477 (2017)

  11. Bogachev, V.I., Kosov, E.D., Zelenov, G.I.: Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality. Trans. Am. Math. Soc. 370(6), 4401–4432 (2018)

    Article  MathSciNet  Google Scholar 

  12. Bogachev, V.I., Krylov, N.V., Röckner, M.: On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Commun. Partial Differ. Equ. 26(11–12), 2037–2080 (2001)

    Article  MathSciNet  Google Scholar 

  13. Bogachev, V.I., Krylov, N.V., Röckner, M., Shaposhnikov, S.V.: Fokker–Planck–Kolmogorov Equations. American Mathematical Society, Rhode Island (2015)

    Book  Google Scholar 

  14. Bogachev, V.I., Miftakhov, A.F., Shaposhnikov, S.V.: Differential properties of semigroups and estimates of distances between stationary distributions of diffusions. Doklady Akademii Nauk 485(4), 399–404 (2019). (in Russian); English transl.: Doklady Math. 99:2, 175–180 (2019)

  15. Bogachev, V.I., Popova, S.N., Shaposhnikov, S.V.: On \(L^1\)-estimates for probability solutions to Fokker–Planck–Kolmogorov equations. arXiv:1803.04568 (2018) (to appear in J. Evol. Equ.)

  16. Bogachev, V.I., Röckner, M., Wang, F.-Y.: Elliptic equations for invariant measures on finite and infinite dimensional manifolds. J. Math. Pures Appl. 80, 177–221 (2001)

    Article  MathSciNet  Google Scholar 

  17. Bogachev, V.I., Röckner, M.: Regularity of invariant measures on finite and infinite dimensional spaces and applications. J. Funct. Anal. 133, 168–223 (1995)

    Article  MathSciNet  Google Scholar 

  18. Bogachev, V.I., Shaposhnikov, A.V.: Lower bounds for the Kantorovich distance. Dokl. Akad. Nauk 460(6), 631–633 (2015). (in Russian); English transl.: Doklady Math. 91:1, 91–93 (2015)

  19. Bogachev, V.I., Wang, F.-Y., Shaposhnikov, A.V.: Estimates of the Kantorovich norm on manifolds. Dokl. Akad. Nauk. 463(6), 633–638 (2015). (in Russian); English transl.: Doklady Math. 92:1, 1–6 (2015)

  20. Bogachev, V.I., Wang, F.-Y., Shaposhnikov, A.V.: On inequalities relating the Sobolev and Kantorovich norms. Dokl. Akad. Nauk 468(2), 131–133 (2016). (in Russian); English transl.: Doklady Math. 93:3, 256–258 (2016)

  21. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  22. Fukushima, M., Hino, M.: On the space of \(BV\) functions and a related stochastic calculus in infinite dimensions. J. Funct. Anal. 183(1), 245–268 (2001)

    Google Scholar 

  23. Krasnosel’skiĭ, M.A., Rutickiĭ, J.B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1961)

    Google Scholar 

  24. Ledoux, M.: Isoperimetry and Gaussian analysis. Lect. Notes Math. 1648, 165–294 (1996)

    Article  MathSciNet  Google Scholar 

  25. Lehec, J.: Regularization in \(L_1\) for the Ornstein–Uhlenbeck semigroup. Annales Faculté des Sci. Toulouse. Math. 25(1), 191–204 (2016)

    Google Scholar 

  26. Röckner, M., Wang, F.-Y.: Log-Harnack inequality for stochastic differential equations in Hilbert spaces and its consequences. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13(1), 27–37 (2010)

    Article  MathSciNet  Google Scholar 

  27. Talagrand, M.: A conjecture on convolution operators, and a non-Dunford–Pettis operator on \(L^1\). Israel J. Math. 68(1), 82–88 (1989)

    Google Scholar 

  28. Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)

    Book  Google Scholar 

  29. Wang, F.-Y.: Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields 109, 417–424 (1997)

    Article  MathSciNet  Google Scholar 

  30. Wang, F.-Y.: Harnack inequalities on manifolds with boundary and applications. J. Math. Pures Appl. 94, 304–321 (2010)

    Article  MathSciNet  Google Scholar 

  31. Wang, F.-Y.: Harnack Inequalities for Stochastic Partial Differential Equations. Springer, New York (2013)

    Book  Google Scholar 

  32. Wang, F.-Y.: Analysis for Diffusion Processes on Riemannian Manifolds. World Scientific, Singapore (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bogachev.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I., Shaposhnikov, A.V. & Shaposhnikov, S.V. Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations. Calc. Var. 58, 176 (2019). https://doi.org/10.1007/s00526-019-1625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1625-x

Mathematics Subject Classification

Navigation