Skip to main content
Log in

The affine Orlicz Pólya–Szegö principle on \(BV(\Omega )\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The affine Orlicz Pólya–Szegö principles with respect to Steiner symmetrization and Schwarz symmetrization proved in Lin and Xing (International mathematics research notices, 2019) are extended to \(BV(\Omega )\), the space of functions of bounded variation defined in an open set \(\Omega \subset \mathbb {R}^n\), and their equality cases are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.: Lectures on Functional Equations and Applications. Academic Press, New York (1966)

    MATH  Google Scholar 

  2. Almgren Jr., F.J., Lieb, E.H.: Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2, 683–773 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Dal Maso, G.: On the representation in \(BV(\Omega; \mathbb{R}^m)\) of quasi-convex integrals. J. Funct. Anal. 109, 76–97 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  5. Barchiesi, M., Capriani, G.M., Fusco, N., Pisante, G.: Stability of Pólya–Szegö inequality for log-concave functions. J. Funct. Anal. 267, 2264–2297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bianchi, G., Gardner, R.J., Gronchi, P.: Symmetrization in geometry. Adv. Math. 306, 51–88 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Böröczky, K.J.: Stronger versions of the Orlicz–Petty projection inequality. J. Differ. Geom. 95, 215–247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Burchard, A.: Cases of equality in the Riesz rearrangement inequality. Ann. Math. 143, 499–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burchard, A.: Steiner symmetrization is continuous in \(W^{1, p}\). Geom. Funct. Anal. 7, 823–860 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burchard, A., Guo, Y.: Compactness via symmetrization. J. Funct. Anal. 214, 40–73 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burchard, A., Ferone, A.: On the extremals of the Pólya–Szegö inequality. Indiana Univ. Math. J. 64, 1447–1463 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Capriani, G.M.: The Steiner rearrangement in any codimension. Calc. Var. Part. Differ. Equ. 49, 517–548 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chlebík, M., Cianchi, A., Fusco, N.: The perimeter inequality under Steiner symmetrization: cases of equality. Ann. Math. 162, 525–555 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cianchi, A.: Second-order derivatives and rearrangements. Duke Math. J. 105, 355–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cianchi, A.: On some aspects of the theory of Orlicz–Sobolev spaces. In: Around the Research of Vladimir Maz’ya. I, Volume 11 of International Mathematical Series (N. Y.), pp. 81–104. Springer, New York (2010)

  18. Cianchi, A., Esposito, L., Fusco, N., Trombetti, C.: A quantitative Pólya–Szegö principle. J. Reine Angew. Math. 614, 153–189 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Cianchi, A., Ferone, V., Nitsch, C., Trombetti, C.: Balls minimize trace constants in \(BV\). J. Reine Angew. Math. 725, 41–61 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Cianchi, A., Fusco, N.: Functions of bounded variation and rearrangements. Arch. Ration. Mech. Anal. 165, 1–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cianchi, A., Fusco, N.: Steiner symmetric extremals in Pólya–Szegö type inequalities. Adv. Math. 203, 673–728 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cianchi, A., Fusco, N.: Minimal rearrangements, strict convexity and critical points. Appl. Anal. 85, 67–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Part. Differ. Equ. 36, 419–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cianchi, A., Pick, L., Slavková, L.: Higher-order Sobolev embeddings and isoperimetric inequalities. Adv. Math. 273, 568–650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised edn. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  26. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39, 355–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  29. Gardner, R.J., Hug, D., Weil, W.: The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gardner, R.J., Hug, D., Weil, W., Ye, D.: The dual Orlicz–Brunn–Minkowski theory. J. Math. Anal. Appl. 430, 810–829 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gardner, R.J., Zhang, G.: Affine inequalities and radial mean bodies. Am. J. Math. 120, 505–528 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Giaquinta, M., Modica, G., Souc̆ek, J.: Cartesian Currents in the Calculus of Variations, Part I: Cartesian Currents, Part II: Variational Integrals. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  33. Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  34. Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Haberl, C., Parapatits, L.: The centro-affine Hadwiger theorem. J. Am. Math. Soc. 27, 685–705 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Haberl, C., Schuster, F.E.: Asymmetric affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Haberl, C., Schuster, F.E., Xiao, J.: An asymmetric affine Pólya–Szegö principle. Math. Ann. 352, 517–542 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  39. Kawohl, B.: On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems. Arch. Ration. Mech. Anal. 94, 227–243 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kesavan, S.: Symmetrization and Applications. Series in Analysis, vol. 3. World Scientific, Hackensack (2006)

    Book  MATH  Google Scholar 

  41. Lin, Y.: Smoothness of the Steiner symmetrization. Proc. Am. Math. Soc. 146, 345–357 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lin, Y.: Affine Orlicz Pólya–Szegö principle for log-concave functions. J. Funct. Anal. 273, 3295–3326 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lin, Y., Leng, G.: Convex bodies with minimal volume product in \(\mathbb{R}^2\)—a new proof. Discrete Math. 310, 3018–3025 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lin, Y., Xing, D.: Affine Orlicz Pólya–Szegö principles and the cases of equality. Int. Math. Res. Not. (2019). https://doi.org/10.1093/imrn/rnz061

    Article  Google Scholar 

  45. Ludwig, M.: General affine surface areas. Adv. Math. 224, 2346–2360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ludwig, M., Reitzner, M.: A characterization of affine surface area. Adv. Math. 147, 138–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ludwig, M., Reitzner, M.: A classification of \(SL(n)\) invariant valuations. Ann. Math. 172, 1219–1267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ludwig, M., Xiao, J., Zhang, G.: Sharp convex Lorentz–Sobolev inequalities. Math. Ann. 350, 169–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lutwak, E.: The Brunn–Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lutwak, E.: The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_p\) Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the \(L^p\) Minkowski problem. Int. Math. Res. Not. Art. ID 62987, 1–21 (2006)

  54. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Maz’ya, V.G.: Sobolev Spaces. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  57. Maz’ya, V.G.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  58. Nguyen, V.H.: New approach to the affine Pólya–Szegö principle and the stability version of the affine Sobolev inequality. Adv. Math. 302, 1080–1110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, vol. 27. Princeton University Press, Princeton (1951)

    Book  MATH  Google Scholar 

  60. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  61. Talenti, G.: On isoperimetric theorems in mathematical physics. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  62. Talenti, G.: Inequalities in rearrangement invariant function spaces. In: Krbec, M., Kufner, A., Opic, B., Rákosnik, J. (eds.) Nonlinear Analysis, Function Spaces and Applications, vol. 5, pp. 177–230. Prometheus, Prague (1994)

    MATH  Google Scholar 

  63. Trudinger, N.S.: On new isoperimetric inequalities and symmetrization. J. Reine Angew. Math. 488, 203–220 (1997)

    MathSciNet  MATH  Google Scholar 

  64. Volc̆ic̆, A.: Random Steiner symmetrizations of sets and functions. Calc. Var. 46, 555–569 (2013)

    Article  MathSciNet  Google Scholar 

  65. Wang, T.: The affine Sobolev–Zhang inquality on \(BV(\mathbb{R}^n)\). Adv. Math. 230, 2457–2473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, GTM 120. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I am very grateful to the referee for many valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjiang Lin.

Additional information

Communicated by N. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the author is supported by NSFC No. 11971080 and the funds of the Basic and Advanced Research Project of CQ CSTC cstc2015jcyjA00009, cstc2018jcyjAX0790 and Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1500628).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y. The affine Orlicz Pólya–Szegö principle on \(BV(\Omega )\). Calc. Var. 58, 178 (2019). https://doi.org/10.1007/s00526-019-1622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1622-0

Mathematics Subject Classification

Navigation