Skip to main content

Advertisement

Log in

Spiked vector solutions of coupled Schrödinger systems with critical exponent and solutions concentrating on spheres

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the singularly perturbed coupled Schrödinger system

where \(A:=\{x\in {\mathbb {R}}^4: 0<a<|x|<b\}\) and \(\lambda _1, \lambda _2, \mu _1,\mu _2>0\). In dimension four, the Sobolev critical exponent is 4. In the cooperative case \(\beta >0\), by using a reduction approach, we prove that there exists some \(\beta _0\in (0,\sqrt{\mu _1\mu _2})\) such that system (\(P_\varepsilon \)) admits a vector solution \((u_\varepsilon ,v_\varepsilon )\) concentrating on the sphere \(|x|=a_\varepsilon \) with \(a_\varepsilon \searrow a\) as \(\varepsilon \rightarrow 0\) if \(0<\beta <\beta _0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Malchiodi, A., Ni, W.-M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I. Commun. Math. Phys. 235, 427–466 (2003)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A., Ni, W.-M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. II. Indiana Univ. Math. J. 53, 297–329 (2004)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  Google Scholar 

  4. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MathSciNet  Google Scholar 

  5. Alves, C.O., Miyagaki, O.H.: Existence and concentration of solution for a class of fractional elliptic equation in \({\mathbb{R}}^N\) via penalization method. Calc. Var. PDE 55(3), Art. 47, 19 pp (2016)

  6. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  7. Benci, V., D’Aprile, T.: The semiclassical limit of the nonlinear Schrödinger equation in a radial potential. J. Differ. Equ. 184, 109–138 (2002)

    Article  Google Scholar 

  8. Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163, 41–54 (2000)

    Article  MathSciNet  Google Scholar 

  9. Bartsch, T., Weth, T., Willem, M.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  10. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \({\mathbb{R}}^3\). J. Math. Pures Appl. 106, 583–614 (2016)

    Article  MathSciNet  Google Scholar 

  11. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)

    Article  MathSciNet  Google Scholar 

  12. Byeon, J.: Semi-classical standing waves for nonlinear Schrödinger systems. Calc. Var. PDE 54, 2287–2340 (2015)

    Article  Google Scholar 

  13. Bonheure, D., Di Cosmo, J., Van Schaftingen, J.: Nonlinear Schrödinger equation with unbounded or vanishing potentials: solutions concentrating on lower dimensional spheres. J. Differ. Equ. 252, 941–968 (2012)

    Article  Google Scholar 

  14. Correia, S., Oliveira, F., Tavares, H.: Semitrivial vs. fully nontrivial ground states in cooperative cubic Schrödinger systems with \(d\ge 3\) equations. J. Funct. Anal. 271, 2247–2273 (2016)

    Article  MathSciNet  Google Scholar 

  15. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205, 515–551 (2012)

    Article  MathSciNet  Google Scholar 

  16. Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. PDE 48, 695–711 (2013)

    Article  Google Scholar 

  17. Chen, Z., Lin, C.-S., Zou, W.: Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(XV), 859–897 (2016)

    MATH  Google Scholar 

  18. Chen, Z., Lin, C.-S., Zou, W.: Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations. J. Differ. Equ. 255, 4289–4311 (2013)

    Article  Google Scholar 

  19. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent higher dimensional case. Calc. Var. PDE 52, 423–467 (2015)

    Article  Google Scholar 

  20. Chen, Z., Lin, C.-S., Zou, W.: Sign-changing solutions and phase separation for an elliptic system with critical exponent. Commun. Partial Differ. Equ. 39, 1827–1859 (2014)

    Article  MathSciNet  Google Scholar 

  21. Dancer, E.N., Wei, J.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361, 1189–1208 (2009)

    Article  Google Scholar 

  22. del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. PDE 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  23. del Pino, M., Kowalczyk, M., Wei, J.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 60, 113–146 (2007)

    Article  Google Scholar 

  24. D’Avenia, P., Pomponio, A., Ruiz, D.: Semi-classical states for the Nonlinear Schrödinger Equation on saddle points of the potential via variational methods. J. Funct. Anal. 262, 4600–4633 (2012)

    Article  MathSciNet  Google Scholar 

  25. do Ó, J.M., Souto, M.A.S.: On a class of nonlinear Schrödinger equations in \({\mathbb{R}}^2\) involving critical grwoth. J. Differ. Equ. 174, 289–311 (2001)

    Article  Google Scholar 

  26. Esry, B.D., Greene, C.H., Burke Jr., J.P., Bohn, J.L.: Hartree-Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    Article  Google Scholar 

  27. Figueiredo, G.M., Ikoma, N., Júnior, J.R.S.: Existence and concentration result for the Kirchhoff equations with general nonlinearities. Arch. Ration. Mech. Anal. 213, 931–979 (2014)

    Article  MathSciNet  Google Scholar 

  28. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  29. Gilbarg, D., Trudinger, N.S.: Elliptic Partical Differential Equations of Second order. Springer, New York (1998)

    MATH  Google Scholar 

  30. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 261–280 (2002)

    Article  MathSciNet  Google Scholar 

  31. He, X., Zou, W.: Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc. Var. PDE 55(4), Art. 91, 39 pp (2016)

  32. Ikoma, N., Tanaka, K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. PDE 40, 449–480 (2011)

    Article  Google Scholar 

  33. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbb{R}}^N\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  Google Scholar 

  34. Lin, T.-C., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 403–439 (2005)

    Article  MathSciNet  Google Scholar 

  35. Lin, T.-C., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n\), \(n\le 3\). Commun. Math. Phys. 255, 629–653 (2005)

    Article  Google Scholar 

  36. Liu, Z., Wang, Z.-Q.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10, 175–193 (2010)

    Article  MathSciNet  Google Scholar 

  37. Liu, J.Q., Liu, X.Q., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. PDE 52, 565–586 (2015)

    Article  Google Scholar 

  38. Liu, J.Q., Liu, X.Q., Wang, Z.-Q.: Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth. J. Differ. Equ. 261, 7194–7236 (2016)

    Article  Google Scholar 

  39. Long, W., Peng, S.: Segregated vector solutions for a class of Bose–Einstein systems. J. Differ. Equ. 257, 207–230 (2014)

    Article  MathSciNet  Google Scholar 

  40. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229, 743–767 (2006)

    Article  Google Scholar 

  41. Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10, 47–71 (2008)

    Article  MathSciNet  Google Scholar 

  42. Ni, W.-M., Takagi, I.: On the shape of least energy solution to a semilinear Neumann problem. Commun. Pure Appl. Math. 41, 819–851 (1991)

    Article  MathSciNet  Google Scholar 

  43. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    Article  Google Scholar 

  44. Pacella, F., Srikanth, P.N.: A reduction method for semilinear equations and solutions concentrating on spheres. J. Funct. Anal. 264, 6456–6472 (2014)

    Article  MathSciNet  Google Scholar 

  45. Pistoia, A., Tavares, H.: Spiked solutions for Schrödinger systems with Sobolev critical exponent the cases of competitive and weakly cooperative interactions. J. Fixed Point Theory Appl. 19, 407–446 (2017)

    Article  MathSciNet  Google Scholar 

  46. Pistoia, A., Soave, N.: On Coron’s problem for weakly coupled elliptic systems. Proc. Lond. Math. Soc. 116, 33–67 (2018)

    Article  MathSciNet  Google Scholar 

  47. Peng, S., Wang, Z.-Q.: Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch. Ration. Mech. Anal. 208, 305–339 (2013)

    Article  MathSciNet  Google Scholar 

  48. Ruf, B., Srikanth, P.N.: Singularly perturbed elliptic equations with solutions concentrating on a \(1\)-dimensional orbit. J. Eur. Math. Soc. 12, 413–427 (2010)

    Article  MathSciNet  Google Scholar 

  49. Ruf, B., Srikanth, P.N.: Hopf fibration and singularly perturbed elliptic equations. Discrete Contin. Dyn. Syst. 7, 823–838 (2014)

    Article  MathSciNet  Google Scholar 

  50. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^N\). Commun. Math. Phys. 271, 199–221 (2007)

    Article  Google Scholar 

  51. Sato, Y., Wang, Z.-Q.: Multiple positive solutions for Schrödinger systems with mixed couplings. Calc. Var. PDE 54, 1373–1392 (2015)

    Article  Google Scholar 

  52. Sato, Y., Wang, Z.-Q.: On the multiple existence of semi-positive solutions for a nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 1–22 (2013)

    Article  MathSciNet  Google Scholar 

  53. Soave, N., Tavares, H.: New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms. J. Differ. Equ. 261, 505–537 (2016)

    Article  Google Scholar 

  54. Soave, N.: On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition. Calc. Var. PDE 53, 689–718 (2015)

    Article  Google Scholar 

  55. Tang, Z.: Spike-layer solutions to singularly perturbed semiliear systems of coupled Schrödinger equations. J. Math. Anal. Appl. 377, 336–352 (2011)

    Article  MathSciNet  Google Scholar 

  56. Tavares, H., Terracini, S.: Sign-changing solutions of competition-diusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 279–300 (2012)

    Article  MathSciNet  Google Scholar 

  57. Troy, W.: Symmetry properties in systems of semilinear elliptic equations. J. Differ. Equ. 42(3), 400–413 (1981)

    Article  MathSciNet  Google Scholar 

  58. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  Google Scholar 

  59. Wang, Z.-Q., Willem, M.: Partial symmetry of vector solutions for elliptic systems. J. Anal. Math. 122, 69–85 (2014)

    Article  MathSciNet  Google Scholar 

  60. Wu, Y., Zou, W.: On a doubly critical Schrödinger system in \({\mathbb{R}}^4\) with steep potential wells. arXiv:1506.03148 [math.AP]

  61. Wu, Y., Wu, T.-F., Zou, W.: On a two-component Bose–Einstein condensate with steep potential wells. Ann. Mat. Pura Appl. 196, 1695–1737 (2017)

    Article  MathSciNet  Google Scholar 

  62. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190, 83–106 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous referee for his/her valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Marcos do Ó.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by INCTmat/MCT/Brazil. J. M. do Ó was supported by CNPq, CAPES/Brazil. J. J. Zhang was supported by NSFC (No. 11871123).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., do Ó, J.M. Spiked vector solutions of coupled Schrödinger systems with critical exponent and solutions concentrating on spheres. Calc. Var. 58, 98 (2019). https://doi.org/10.1007/s00526-019-1540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1540-1

Mathematics Subject Classification

Navigation