Abstract
It is known that a complete immersed minimal surface with finite total curvature in \({\mathbb {H}}^2\times {\mathbb {R}}\) is proper, has finite topology and each one of its ends is asymptotic to a geodesic polygon at infinity (Hauswirth and Rosenberg in Mat Contemp 31:65–80, 2006; Hauswirth et al. in Adv Math 274:199–240, 2015). In this paper we prove that these three properties characterize complete immersed minimal surfaces with finite total curvature in \({\mathbb {H}}^2\times {\mathbb {R}}\). As corollaries of this theorem we obtain characterizations for minimal Scherk-type graphs and horizontal catenoids in \({\mathbb {H}}^2\times {\mathbb {R}}\). We also prove that if a properly immersed minimal surface in \(\widetilde{\mathrm{PSL}}_2({\mathbb {R}},\tau )\) has finite topology and each one of its ends is asymptotic to a geodesic polygon at infinity, then it must have finite total curvature.
Similar content being viewed by others
References
Collin, P., Hauswirth, L., Hoang Nguyen, M.: Construction of Minimal annuli in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$ via variational method. Preprint
Collin, P., Hauswirth, L., Rosenberg, H.: Properly immersed minimal surfaces in a slab of ${\mathbb{H}}^2\times {\mathbb{R}},$ ${\mathbb{H}}^2$ the hyperbolic plane. Arch. Math. 104, 471–484 (2015)
Collin, P., Hauswirth, L., Rosenberg, H.: Minimal surfaces in finite volume hyperbolic 3-manifolds $N$ and in $M\times {\mathbb{S}}^1, M$ a finite area hyperbolic surface. Amer. J. Math. 140, 1075–1112 (2018)
Collin, P., Rosenberg, H.: Construction of harmonic diffeomorphisms and minimal graphs. Ann. Math. 172, 1879–1906 (2010)
Daniel, B.: Isometric immersions into ${\mathbb{S}}^n\times {\mathbb{R}}$ and ${\mathbb{H}}^n\times {\mathbb{R}}$ and applications to minimal surfaces. Trans. Am. Math. Soc. 361, 6255–6282 (2009)
Fischer-Colbie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Commun. Pure Appl. Math. 33, 199–211 (1980)
Folha, A., Peñafiel, C.: Minimal graphs in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$. Preprint
Hauswirth, L.: Minimal surfaces of Riemann type in three-dimensional product manifolds. Pac. J. Math. 224, 91–117 (2006)
Hauswirth, L., Nelli, B., Sa Earp, R., Toubiana, E.: Minimal ends in ${\mathbb{H}}^2\times {\mathbb{R}}$ with finite total curvature and a Schoen type theorem. Adv. Math. 274, 199–240 (2015)
Hauswirth, L., Rosenberg, H.: Minimal surfaces of finite total curvature in ${\mathbb{H}}\times \mathbb{R}$. Mat. Contemp. 31, 65–80 (2006)
Martín, F., Mazzeo, R., Rodríguez, M.M.: Minimal surfaces with positive genus and finite total curvature in ${\mathbb{H}}^2\times {\mathbb{R}}$. Geom. Topol. 18, 141–177 (2014)
Mazet, L., Rodríguez, M.M., Rosenberg, H.: The Dirichlet problem for the minimal surface equation with possible infinite boundary data over domains in a Riemannian surface. Proc. Lond. Math. Soc. 102, 985–1023 (2011)
Mazet, L., Magdalena Rodríguez, M., Rosenberg, H.: Periodic constant mean curvature surfaces in ${\mathbb{H}}\times {\mathbb{R}}$. Asian J. Math. 18, 829–858 (2014)
Melo, S.: Minimal graphs in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$ over unbounded domains. Bull. Braz. Math. Soc. New Ser. 45, 91–116 (2014)
Morabito, F., Rodríguez, M.M.: Saddle towers and minimal $k$-noids in ${\mathbb{H}}^2\times {\mathbb{R}}$. J. Inst. Math. Jussieu 11, 333–349 (2012)
Nguyen, M.: On existence of surfaces with finite total curvature in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$. Preprint
Penafiel, C.: Invariant surfaces in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$ and applications. Bull. Braz. Math. Soc. New Ser. 43, 545–578 (2012)
Pyo, J.: New complete embedded minimal surfaces in ${\mathbb{H}}^2\times {\mathbb{R}}$. Ann. Glob. Anal. Geom. 40, 167–176 (2011)
Pyo, J., Rodríguez, M.M.: Simply-connected minimal surfaces with finite total curvature in ${\mathbb{H}}^2\times {\mathbb{R}}$. Int. Math. Res. Notices 2014, 2944–2954 (2014)
Rodríguez, M.M., Tinaglia, G.: Non-proper complete minimal surfaces embedded in ${\mathbb{H}}^2\times {\mathbb{R}}$. Int. Math. Res. Notices 2015, 4322–4334 (2015)
Rosenberg, H., Souam, R., Toubiana, E.: General curvature estimates for stable $H$-surfaces in 3-manifolds and aplications. J. Differ. Geom. 84, 623–648 (2010)
Sa Earp, R., Toubiana, E.: Screw motion surfaces in ${\mathbb{S}}^2\times {\mathbb{R}}$ and ${\mathbb{H}}^2\times {\mathbb{R}}$. Illinois J. Math. 49, 1323–1362 (2005)
Sa Earp, R., Toubiana, E.: A minimal stable vertical planar end in ${\mathbb{H}}^2 \times {\mathbb{R}}$ has finite total curvature. J. London Math. Soc. 92, 712–723 (2015)
Sa Earp, R., Toubiana, E.: Concentration of total curvature of minimal surfaces in ${\mathbb{H}}^2 \times {\mathbb{R}}$. Math. Annalen 369, 1599–1621 (2017)
Schoen, R.: Estimates for stable minimal surface in three dimensional manifolds. Ann. Math. Stud. 103, 127–146 (1983)
Younes, R.: Minimal surfaces in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$. Illinois J. Math. 54(2), 671–712 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Neves.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Research partially supported by the MCyT-FEDER research project MTM2014-52368-P, MTM2017-89677-P, and by the GENIL research project no. PYR-2014-21 of CEI BioTic GRANADA.
Rights and permissions
About this article
Cite this article
Hauswirth, L., Menezes, A. & Rodríguez, M. On the characterization of minimal surfaces with finite total curvature in \({\mathbb {H}}^2\times {\mathbb {R}}\) and \(\widetilde{\mathrm{PSL}}_2 ({\mathbb {R}})\). Calc. Var. 58, 80 (2019). https://doi.org/10.1007/s00526-019-1505-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00526-019-1505-4