Skip to main content
Log in

On the characterization of minimal surfaces with finite total curvature in \({\mathbb {H}}^2\times {\mathbb {R}}\) and \(\widetilde{\mathrm{PSL}}_2 ({\mathbb {R}})\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

It is known that a complete immersed minimal surface with finite total curvature in \({\mathbb {H}}^2\times {\mathbb {R}}\) is proper, has finite topology and each one of its ends is asymptotic to a geodesic polygon at infinity (Hauswirth and Rosenberg in Mat Contemp 31:65–80, 2006; Hauswirth et al. in Adv Math 274:199–240, 2015). In this paper we prove that these three properties characterize complete immersed minimal surfaces with finite total curvature in \({\mathbb {H}}^2\times {\mathbb {R}}\). As corollaries of this theorem we obtain characterizations for minimal Scherk-type graphs and horizontal catenoids in \({\mathbb {H}}^2\times {\mathbb {R}}\). We also prove that if a properly immersed minimal surface in \(\widetilde{\mathrm{PSL}}_2({\mathbb {R}},\tau )\) has finite topology and each one of its ends is asymptotic to a geodesic polygon at infinity, then it must have finite total curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Collin, P., Hauswirth, L., Hoang Nguyen, M.: Construction of Minimal annuli in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$ via variational method. Preprint

  2. Collin, P., Hauswirth, L., Rosenberg, H.: Properly immersed minimal surfaces in a slab of ${\mathbb{H}}^2\times {\mathbb{R}},$ ${\mathbb{H}}^2$ the hyperbolic plane. Arch. Math. 104, 471–484 (2015)

    Google Scholar 

  3. Collin, P., Hauswirth, L., Rosenberg, H.: Minimal surfaces in finite volume hyperbolic 3-manifolds $N$ and in $M\times {\mathbb{S}}^1, M$ a finite area hyperbolic surface. Amer. J. Math. 140, 1075–1112 (2018)

    Google Scholar 

  4. Collin, P., Rosenberg, H.: Construction of harmonic diffeomorphisms and minimal graphs. Ann. Math. 172, 1879–1906 (2010)

    Google Scholar 

  5. Daniel, B.: Isometric immersions into ${\mathbb{S}}^n\times {\mathbb{R}}$ and ${\mathbb{H}}^n\times {\mathbb{R}}$ and applications to minimal surfaces. Trans. Am. Math. Soc. 361, 6255–6282 (2009)

    Google Scholar 

  6. Fischer-Colbie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Commun. Pure Appl. Math. 33, 199–211 (1980)

    Google Scholar 

  7. Folha, A., Peñafiel, C.: Minimal graphs in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$. Preprint

  8. Hauswirth, L.: Minimal surfaces of Riemann type in three-dimensional product manifolds. Pac. J. Math. 224, 91–117 (2006)

    Google Scholar 

  9. Hauswirth, L., Nelli, B., Sa Earp, R., Toubiana, E.: Minimal ends in ${\mathbb{H}}^2\times {\mathbb{R}}$ with finite total curvature and a Schoen type theorem. Adv. Math. 274, 199–240 (2015)

    Google Scholar 

  10. Hauswirth, L., Rosenberg, H.: Minimal surfaces of finite total curvature in ${\mathbb{H}}\times \mathbb{R}$. Mat. Contemp. 31, 65–80 (2006)

    Google Scholar 

  11. Martín, F., Mazzeo, R., Rodríguez, M.M.: Minimal surfaces with positive genus and finite total curvature in ${\mathbb{H}}^2\times {\mathbb{R}}$. Geom. Topol. 18, 141–177 (2014)

    Google Scholar 

  12. Mazet, L., Rodríguez, M.M., Rosenberg, H.: The Dirichlet problem for the minimal surface equation with possible infinite boundary data over domains in a Riemannian surface. Proc. Lond. Math. Soc. 102, 985–1023 (2011)

    Google Scholar 

  13. Mazet, L., Magdalena Rodríguez, M., Rosenberg, H.: Periodic constant mean curvature surfaces in ${\mathbb{H}}\times {\mathbb{R}}$. Asian J. Math. 18, 829–858 (2014)

    Google Scholar 

  14. Melo, S.: Minimal graphs in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$ over unbounded domains. Bull. Braz. Math. Soc. New Ser. 45, 91–116 (2014)

    Google Scholar 

  15. Morabito, F., Rodríguez, M.M.: Saddle towers and minimal $k$-noids in ${\mathbb{H}}^2\times {\mathbb{R}}$. J. Inst. Math. Jussieu 11, 333–349 (2012)

    Google Scholar 

  16. Nguyen, M.: On existence of surfaces with finite total curvature in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$. Preprint

  17. Penafiel, C.: Invariant surfaces in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$ and applications. Bull. Braz. Math. Soc. New Ser. 43, 545–578 (2012)

    Google Scholar 

  18. Pyo, J.: New complete embedded minimal surfaces in ${\mathbb{H}}^2\times {\mathbb{R}}$. Ann. Glob. Anal. Geom. 40, 167–176 (2011)

    Google Scholar 

  19. Pyo, J., Rodríguez, M.M.: Simply-connected minimal surfaces with finite total curvature in ${\mathbb{H}}^2\times {\mathbb{R}}$. Int. Math. Res. Notices 2014, 2944–2954 (2014)

    Google Scholar 

  20. Rodríguez, M.M., Tinaglia, G.: Non-proper complete minimal surfaces embedded in ${\mathbb{H}}^2\times {\mathbb{R}}$. Int. Math. Res. Notices 2015, 4322–4334 (2015)

    Google Scholar 

  21. Rosenberg, H., Souam, R., Toubiana, E.: General curvature estimates for stable $H$-surfaces in 3-manifolds and aplications. J. Differ. Geom. 84, 623–648 (2010)

    Google Scholar 

  22. Sa Earp, R., Toubiana, E.: Screw motion surfaces in ${\mathbb{S}}^2\times {\mathbb{R}}$ and ${\mathbb{H}}^2\times {\mathbb{R}}$. Illinois J. Math. 49, 1323–1362 (2005)

    Google Scholar 

  23. Sa Earp, R., Toubiana, E.: A minimal stable vertical planar end in ${\mathbb{H}}^2 \times {\mathbb{R}}$ has finite total curvature. J. London Math. Soc. 92, 712–723 (2015)

    Google Scholar 

  24. Sa Earp, R., Toubiana, E.: Concentration of total curvature of minimal surfaces in ${\mathbb{H}}^2 \times {\mathbb{R}}$. Math. Annalen 369, 1599–1621 (2017)

    Google Scholar 

  25. Schoen, R.: Estimates for stable minimal surface in three dimensional manifolds. Ann. Math. Stud. 103, 127–146 (1983)

    Google Scholar 

  26. Younes, R.: Minimal surfaces in $\widetilde{{\rm PSL}}_2 ({\mathbb{R}},\tau )$. Illinois J. Math. 54(2), 671–712 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Hauswirth.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by the MCyT-FEDER research project MTM2014-52368-P, MTM2017-89677-P, and by the GENIL research project no. PYR-2014-21 of CEI BioTic GRANADA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauswirth, L., Menezes, A. & Rodríguez, M. On the characterization of minimal surfaces with finite total curvature in \({\mathbb {H}}^2\times {\mathbb {R}}\) and \(\widetilde{\mathrm{PSL}}_2 ({\mathbb {R}})\). Calc. Var. 58, 80 (2019). https://doi.org/10.1007/s00526-019-1505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1505-4

Mathematics Subject Classification

Navigation