Abstract
The directional differentiability of the solution map of obstacle type quasi-variational inequalities (QVIs) with respect to perturbations on the forcing term is studied. The classical result of Mignot is then extended to the quasi-variational case under assumptions that allow multiple solutions of the QVI. The proof involves selection procedures for the solution set and represents the directional derivative as the limit of a monotonic sequence of directional derivatives associated to specific variational inequalities. Additionally, estimates on the coincidence set and several simplifications under higher regularity are studied. The theory is illustrated by a detailed study of an application to thermoforming comprising of modelling, analysis and some numerical experiments.
This is a preview of subscription content, access via your institution.




References
Alphonse, A., Hintermüller, M., Rautenberg, C.N.: Recent trends and views on elliptic quasi-variational inequalities. WIAS Preprint No. 2518 (2018)
Ancona, A.: Continuité des contractions dans les espaces de Dirichlet. Lecture Notes in Mathematics, vol. 563, pp. 1–26. Springer, Berlin (1976)
Andrä, H., Warby, M.K., Whiteman, J.R.: Contact problems of hyperelastic membranes: existence theory. Math. Methods Appl. Sci. 23, 865–895 (2000)
Antil, H., Rautenberg, C.N.: Fractional elliptic quasi-variational inequalities: theory and numerics. Interfaces Free Bound. 20(1), 1–24 (2018). https://doi.org/10.4171/IFB/395
Attouch, H., Picard, C.: Inéquations variationnelles avec obstacles et espaces fonctionnels en théorie du potentiel. Appl. Anal. 12(4), 287–306 (1981). https://doi.org/10.1080/00036818108839369
Aubin, J.P.: Mathematical Methods of Game and Economic Theory, Revised edn. Dover Publications Inc., Mineola (2007). (With a new preface by the author)
Barrett, J.W., Prigozhin, L.: A quasi-variational inequality problem in superconductivity. Math. Models Methods Appl. Sci. 20(5), 679–706 (2010). https://doi.org/10.1142/S0218202510004404
Barrett, J.W., Prigozhin, L.: A quasi-variational inequality problem arising in the modeling of growing sandpiles. ESAIM Math. Model. Numer. Anal. 47(4), 1133–1165 (2013). https://doi.org/10.1051/m2an/2012062
Barrett, J.W., Prigozhin, L.: Lakes and rivers in the landscape: a quasi-variational inequality approach. Interfaces Free Bound. 16(2), 269–296 (2014). https://doi.org/10.4171/IFB/320
Barrett, J.W., Prigozhin, L.: Sandpiles and superconductors: nonconforming linear finite element approximations for mixed formulations of quasi-variational inequalities. IMA J. Numer. Anal. 35(1), 1–38 (2015). https://doi.org/10.1093/imanum/drt062
Bensoussan, A., Goursat, M., Lions, J.L.: Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires. C. R. Acad. Sci. Paris Sér. A-B 276, A1279–A1284 (1973)
Bensoussan, A., Lions, J.L.: Impulse Control and Quasivariational Inequalities. Heyden & Son Inc., Philadelphia, PA (1984). (Translated from the French by J. M. Cole)
Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, vol. 25, 3rd edn. American Mathematical Society, Providence (1979)
Bliedtner, J.: Dirichlet Forms on Regular Functional Spaces. Lecture Notes in Mathematics, vol. 226, pp. 15–62. Springer, Berlin (1971)
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1394-9
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)
Brezis, HmR, Stampacchia, G.: Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. Fr. 96, 153–180 (1968)
Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010). https://doi.org/10.1016/j.aim.2010.01.025
Christof, C., Meyer, C.: Sensitivity analysis for a class of \(h^1_0\)-elliptic variational inequalities of the second kind. Set-Valued Var. Anal. 1–34 (2018). https://doi.org/10.1007/s11228-018-0495-2
Christof, C., Wachsmuth, G.: On the non-polyhedricity of sets with upper and lower bounds in dual spaces. GAMM-Mitteilungen 40(4), 339–350 (2018). https://doi.org/10.1002/gamm.201740005. Kindly check and confirm publishing year for the references [20, 31]
Delfour, M.C., Zolésio, J.P.: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Advances in Design and Control, vol. 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)
Dentcheva, D.: On differentiability of metric projections onto moving convex sets. Ann. Oper. Res. 101(1–4), 283–298 (2001). https://doi.org/10.1023/A:1010945230381
Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012). https://doi.org/10.1016/j.bulsci.2011.12.004
Dunford, N., Schwartz, J.T.: Linear Operators. Part I. Wiley Classics Library. Wiley, New York (1988). (General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication)
Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. De Gruyter Studies in Mathematics, Extended Edition, vol. 19. Walter de Gruyter & Co., Berlin (2011)
Gaevskaya, A.: Adaptive finite elements for optimally controlled elliptic variational inequalities of obstacle type. Ph.D. Thesis, Universität Augsburg (2013)
Gaevskaya, A., Hintermüller, M., Hoppe, R.H.W., Löbhard, C.: Adaptive finite elements for optimally controlled elliptic variational inequalities of obstacle type. In: Hoppe, R. (ed.) Optimization with PDE Constraints. Lecture Notes in Computational Science and Engineering, vol. 101, pp. 95–150. Springer, Cham (2014)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)
Hanouzet, B., Joly, J.L.: Convergence uniforme des itérés définissant la solution d’une inéquation quasi variationnelle abstraite. C. R. Acad. Sci. Paris Sér. A-B 286(17), A735–A738 (1978)
Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29(4), 615–631 (1977). https://doi.org/10.2969/jmsj/02940615
Harder, F., Wachsmuth, G.: Comparison of optimality systems for the optimal control of the obstacle problem. GAMM-Mitteilungen 40(4), 312–338 (2018). https://doi.org/10.1002/gamm.201740004
Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Oxford Science Publications. Oxford University Press, New York (1993)
Hintermüller, M., Kopacka, I.: A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl. 50(1), 111–145 (2011). https://doi.org/10.1007/s10589-009-9307-9
Hintermüller, M., Rautenberg, C.N.: A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints. SIAM J. Optim. 22(4), 1224–1257 (2012). https://doi.org/10.1137/110837048
Hintermüller, M., Rautenberg, C.N.: Parabolic quasi-variational inequalities with gradient-type constraints. SIAM J. Optim. 23(4), 2090–2123 (2013). https://doi.org/10.1137/120874308
Hintermüller, M., Rautenberg, C.N.: On the uniqueness and numerical approximation of solutions to certain parabolic quasi-variational inequalities. Port. Math. 74(1), 1–35 (2017). https://doi.org/10.4171/PM/1991
Hintermüller, M., Rautenberg, C.N., Strogies, N.: Dissipative and non-dissipative evolutionary quasi-variational inequalities with gradient constraints. Set-Valued Var. Anal. 1–36 (2018). https://doi.org/10.1007/s11228-018-0489-0
Hintermüller, M., Surowiec, T.: First-order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 21(4), 1561–1593 (2011). https://doi.org/10.1137/100802396
Hintermüller, M., Surowiec, T.: A bundle-free implicit programming approach for a class of elliptic MPECs in function space. Math. Program. Ser. A.https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/1326 (2015) (Accepted)
Hintermüller, M., Surowiec, T.M.: On the directional differentiability of the solution mapping for a class of variational inequalities of the second kind. Set-Valued Var. Anal. 26, 631–642 (2017). https://doi.org/10.1007/s11228-017-0408-9
Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)
Jiang, W.G., Warby, M.K., Whiteman, J.R., Abbot, S., Shorter, W., Warwick, P., Wright, T., Munro, A., Munro, B.: Finite element modelling of high air pressure forming processes for polymer sheets. Comput. Mech. 31, 163–172 (2001)
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)
Kočvara, M., Outrata, J.: On a class of quasi-variational inequalities. Optim. Methods Softw. 5(4), 275–295 (1995)
Kunze, M., Rodrigues, J.F.: An elliptic quasi-variational inequality with gradient constraints and some of its applications. Math. Methods Appl. Sci. 23(10), 897–908 (2000). https://doi.org/10.1002/1099-1476(20000710)23:10<897::AID-MMA141>3.0.CO;2-H
Laetsch, T.H.: A uniqueness theorem for elliptic Q. V. I. J. Funct. Anal. 18, 286–288 (1975)
Lee, J.K., Virkler, T.L., Scott, C.E.: Effects of rheological properties and processing parameters on abs thermoforming. Polym. Eng. Sci. 41(2), 240–261 (2001)
Levy, A.: Sensitivity of solutions to variational inequalities on Banach spaces. SIAM J. Control Optim. 38(1), 50–60 (1999)
Lions, J.L.: Sur le contrôle optimal de systèmes distribués. Enseign. Math. 2(19), 125–166 (1973)
Ma, Z.M., Röckner, M.: Markov processes associated with positivity preserving coercive forms. Can. J. Math. 47(4), 817–840 (1995). https://doi.org/10.4153/CJM-1995-042-6
Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)
Mignot, F., Puel, J.P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984). https://doi.org/10.1137/0322028
Mordukhovich, B.S., Outrata, J.: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18(2), 389–412 (2007). https://doi.org/10.1137/060665609
Mosco, U.: Convergence of convex sets and solutions of variational inequalities. Adv. Math. 3(4), 510–585 (1969)
Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J.P., Lami Dozo, E.J., Mawhin, J., Waelbroeck, L. (eds.) Nonlinear Operators and the Calculus of Variations, pp. 83–156. Springer, Berlin (1976). https://doi.org/10.1007/BFb0079943
Mosco, U., Joly, J.L., Troianiello, G.M.: On the regular solution of a quasi-variational inequality connected to a problem of stochastic impulse control. J. Math. Anal. Appl. 61, 357–369 (1977)
Nam, G.J., Ahn, K.H., Lee, J.W.: Three-dimensional simulation of thermoforming process and its comparison with experiments. Polym. Eng. Sci. 40(10), 2232–2240 (2000)
Outrata, J.: Semismoothness in parametrized quasi-variational inequalities. In: System Modelling and Optimization (Prague, 1995), pp. 203–210. Chapman & Hall, London (1996)
Outrata, J.: Solution behaviour for parameter-dependent quasi-variational inequalities. RAIRO Rech. Opér. 30(4), 399–415 (1996). https://doi.org/10.1051/ro/1996300403991
Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Norwell (1998)
Outrata, J., Zowe, J.: A Newton method for a class of quasi-variational inequalities. Comput. Optim. Appl. 4(1), 5–21 (1995). https://doi.org/10.1007/BF01299156
Penot, J.P.: Calculus Without Derivatives. Graduate Texts in Mathematics, vol. 266. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4538-8
Prigozhin, L.: Sandpiles and river networks: extended systems with non-local interactions. Phys. Rev. E 49, 1161–1167 (1994)
Prigozhin, L.: On the Bean critical-state model in superconductivity. Eur. J. Appl. Math. 7, 237–247 (1996)
Prigozhin, L.: Sandpiles, river networks, and type-II superconductors. Free Bound. Probl. News 10, 2–4 (1996)
Prigozhin, L.: Variational model of sandpile growth. Eur. J. Appl. Math. 7(3), 225–235 (1996). https://doi.org/10.1017/S0956792500002321
Rodrigues, J.F.: Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies, vol. 134. North-Holland Publishing Co., Amsterdam (1987). (Notas de Matemática [Mathematical Notes], 114)
Rodrigues, J.F., Santos, L.: A parabolic quasi-variational inequality arising in a superconductivity model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(1), 153–169 (2000)
Shapiro, A.: On concepts of directional differentiability. J. Optim. Theory Appl. 66(3), 477–487 (1990). https://doi.org/10.1007/BF00940933
Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)
Tartar, L.: Inéquations quasi variationnelles abstraites. C. R. Acad. Sci. Paris 178, 1193–1196 (1974)
Toyoizumi, H.: Continuous dependence on obstacles in variational inequalities. Funkc. Ekvacioj 34, 103–115 (1991)
Wachsmuth, G.: Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Optim. 24(4), 1914–1932 (2014)
Warby, M.K., Whiteman, J.R., Jiang, W.G., Warwick, P., Wright, T.: Finite element simulation of thermoforming processes for polymer sheets. Math. Comput. Simul. 61, 209–218 (2003)
Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Contributions to Nonlinear Functional Analysis, pp. 237–424 (1971). http://www.ams.org/mathscinet-getitem?mr=52:9014
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by L. Caffarelli.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This research was carried out in the framework of MATHEON supported by the Einstein Foundation Berlin within the ECMath projects OT1, SE5, CH12 and SE15/SE19 as well as project A-AP24. The authors further acknowledge the support of the DFG through the DFG-SPP 1962: Priority Programme “Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization” within Projects 10, 11, and 13, through Grant no. HI 1466/7-1 Free Boundary Problems and Level Set Methods, and SFB/TRR154.
A Simplification of the Laplace–Beltrami operator
A Simplification of the Laplace–Beltrami operator
Define \(T(r) := {\hat{T}}(r,{\varPhi }(u)(r))\) so that \(T:[0,1]\rightarrow {\mathbb {R}}\). We want to write \({\varDelta }_{\varGamma } {\hat{T}}\) in terms of \({\varDelta } T\). With \(w:={\varPhi }(u)\), the metric tensor is \(g_{11}=g = 1+ (w')^2\) and its inverse is \(g^{11}={1}\slash (1+(w')^2)=g^{-1}\) and so the Laplace–Beltrami of a function \({\hat{H}}:{\varGamma } \rightarrow {\mathbb {R}}\) can be written as
where \(H:[0,L] \rightarrow {\mathbb {R}}\) is defined by \(H(r) = {\hat{H}}(r,w(r))\). Thus
Noticing that \(g' = 2w'w''\), the above reads
And now picking \({\hat{H}}={\hat{T}}\), we find
Then if \(x=(x_1,x_2) = (r, {\varPhi }(r))\) the Eq. (54) becomes
In order to deduce (50) we have taken \({\varPhi }(u)'\) to be close to zero in the equality above.
Rights and permissions
About this article
Cite this article
Alphonse, A., Hintermüller, M. & Rautenberg, C.N. Directional differentiability for elliptic quasi-variational inequalities of obstacle type. Calc. Var. 58, 39 (2019). https://doi.org/10.1007/s00526-018-1473-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00526-018-1473-0