Skip to main content

Directional differentiability for elliptic quasi-variational inequalities of obstacle type

Abstract

The directional differentiability of the solution map of obstacle type quasi-variational inequalities (QVIs) with respect to perturbations on the forcing term is studied. The classical result of Mignot is then extended to the quasi-variational case under assumptions that allow multiple solutions of the QVI. The proof involves selection procedures for the solution set and represents the directional derivative as the limit of a monotonic sequence of directional derivatives associated to specific variational inequalities. Additionally, estimates on the coincidence set and several simplifications under higher regularity are studied. The theory is illustrated by a detailed study of an application to thermoforming comprising of modelling, analysis and some numerical experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    This exists by Theorem 3.

  2. 2.

    Under these circumstances, g maps W into W [32, Theorem 1.18].

References

  1. 1.

    Alphonse, A., Hintermüller, M., Rautenberg, C.N.: Recent trends and views on elliptic quasi-variational inequalities. WIAS Preprint No. 2518 (2018)

  2. 2.

    Ancona, A.: Continuité des contractions dans les espaces de Dirichlet. Lecture Notes in Mathematics, vol. 563, pp. 1–26. Springer, Berlin (1976)

    MATH  Google Scholar 

  3. 3.

    Andrä, H., Warby, M.K., Whiteman, J.R.: Contact problems of hyperelastic membranes: existence theory. Math. Methods Appl. Sci. 23, 865–895 (2000)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Antil, H., Rautenberg, C.N.: Fractional elliptic quasi-variational inequalities: theory and numerics. Interfaces Free Bound. 20(1), 1–24 (2018). https://doi.org/10.4171/IFB/395

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Attouch, H., Picard, C.: Inéquations variationnelles avec obstacles et espaces fonctionnels en théorie du potentiel. Appl. Anal. 12(4), 287–306 (1981). https://doi.org/10.1080/00036818108839369

    Article  MATH  Google Scholar 

  6. 6.

    Aubin, J.P.: Mathematical Methods of Game and Economic Theory, Revised edn. Dover Publications Inc., Mineola (2007). (With a new preface by the author)

    MATH  Google Scholar 

  7. 7.

    Barrett, J.W., Prigozhin, L.: A quasi-variational inequality problem in superconductivity. Math. Models Methods Appl. Sci. 20(5), 679–706 (2010). https://doi.org/10.1142/S0218202510004404

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Barrett, J.W., Prigozhin, L.: A quasi-variational inequality problem arising in the modeling of growing sandpiles. ESAIM Math. Model. Numer. Anal. 47(4), 1133–1165 (2013). https://doi.org/10.1051/m2an/2012062

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Barrett, J.W., Prigozhin, L.: Lakes and rivers in the landscape: a quasi-variational inequality approach. Interfaces Free Bound. 16(2), 269–296 (2014). https://doi.org/10.4171/IFB/320

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Barrett, J.W., Prigozhin, L.: Sandpiles and superconductors: nonconforming linear finite element approximations for mixed formulations of quasi-variational inequalities. IMA J. Numer. Anal. 35(1), 1–38 (2015). https://doi.org/10.1093/imanum/drt062

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Bensoussan, A., Goursat, M., Lions, J.L.: Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires. C. R. Acad. Sci. Paris Sér. A-B 276, A1279–A1284 (1973)

    MATH  Google Scholar 

  12. 12.

    Bensoussan, A., Lions, J.L.: Impulse Control and Quasivariational Inequalities. Heyden & Son Inc., Philadelphia, PA (1984). (Translated from the French by J. M. Cole)

    Google Scholar 

  13. 13.

    Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, vol. 25, 3rd edn. American Mathematical Society, Providence (1979)

    MATH  Google Scholar 

  14. 14.

    Bliedtner, J.: Dirichlet Forms on Regular Functional Spaces. Lecture Notes in Mathematics, vol. 226, pp. 15–62. Springer, Berlin (1971)

    Google Scholar 

  15. 15.

    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1394-9

    Book  MATH  Google Scholar 

  16. 16.

    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  17. 17.

    Brezis, HmR, Stampacchia, G.: Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. Fr. 96, 153–180 (1968)

    Article  Google Scholar 

  18. 18.

    Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010). https://doi.org/10.1016/j.aim.2010.01.025

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Christof, C., Meyer, C.: Sensitivity analysis for a class of \(h^1_0\)-elliptic variational inequalities of the second kind. Set-Valued Var. Anal. 1–34 (2018). https://doi.org/10.1007/s11228-018-0495-2

  20. 20.

    Christof, C., Wachsmuth, G.: On the non-polyhedricity of sets with upper and lower bounds in dual spaces. GAMM-Mitteilungen 40(4), 339–350 (2018). https://doi.org/10.1002/gamm.201740005. Kindly check and confirm publishing year for the references [20, 31]

    MathSciNet  Article  Google Scholar 

  21. 21.

    Delfour, M.C., Zolésio, J.P.: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Advances in Design and Control, vol. 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

    MATH  Google Scholar 

  22. 22.

    Dentcheva, D.: On differentiability of metric projections onto moving convex sets. Ann. Oper. Res. 101(1–4), 283–298 (2001). https://doi.org/10.1023/A:1010945230381

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012). https://doi.org/10.1016/j.bulsci.2011.12.004

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Dunford, N., Schwartz, J.T.: Linear Operators. Part I. Wiley Classics Library. Wiley, New York (1988). (General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication)

    Google Scholar 

  25. 25.

    Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. De Gruyter Studies in Mathematics, Extended Edition, vol. 19. Walter de Gruyter & Co., Berlin (2011)

    MATH  Google Scholar 

  26. 26.

    Gaevskaya, A.: Adaptive finite elements for optimally controlled elliptic variational inequalities of obstacle type. Ph.D. Thesis, Universität Augsburg (2013)

  27. 27.

    Gaevskaya, A., Hintermüller, M., Hoppe, R.H.W., Löbhard, C.: Adaptive finite elements for optimally controlled elliptic variational inequalities of obstacle type. In: Hoppe, R. (ed.) Optimization with PDE Constraints. Lecture Notes in Computational Science and Engineering, vol. 101, pp. 95–150. Springer, Cham (2014)

    Google Scholar 

  28. 28.

    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)

    Book  Google Scholar 

  29. 29.

    Hanouzet, B., Joly, J.L.: Convergence uniforme des itérés définissant la solution d’une inéquation quasi variationnelle abstraite. C. R. Acad. Sci. Paris Sér. A-B 286(17), A735–A738 (1978)

    MATH  Google Scholar 

  30. 30.

    Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29(4), 615–631 (1977). https://doi.org/10.2969/jmsj/02940615

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Harder, F., Wachsmuth, G.: Comparison of optimality systems for the optimal control of the obstacle problem. GAMM-Mitteilungen 40(4), 312–338 (2018). https://doi.org/10.1002/gamm.201740004

    MathSciNet  Article  Google Scholar 

  32. 32.

    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Oxford Science Publications. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  33. 33.

    Hintermüller, M., Kopacka, I.: A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl. 50(1), 111–145 (2011). https://doi.org/10.1007/s10589-009-9307-9

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Hintermüller, M., Rautenberg, C.N.: A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints. SIAM J. Optim. 22(4), 1224–1257 (2012). https://doi.org/10.1137/110837048

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Hintermüller, M., Rautenberg, C.N.: Parabolic quasi-variational inequalities with gradient-type constraints. SIAM J. Optim. 23(4), 2090–2123 (2013). https://doi.org/10.1137/120874308

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Hintermüller, M., Rautenberg, C.N.: On the uniqueness and numerical approximation of solutions to certain parabolic quasi-variational inequalities. Port. Math. 74(1), 1–35 (2017). https://doi.org/10.4171/PM/1991

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Hintermüller, M., Rautenberg, C.N., Strogies, N.: Dissipative and non-dissipative evolutionary quasi-variational inequalities with gradient constraints. Set-Valued Var. Anal. 1–36 (2018). https://doi.org/10.1007/s11228-018-0489-0

  38. 38.

    Hintermüller, M., Surowiec, T.: First-order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 21(4), 1561–1593 (2011). https://doi.org/10.1137/100802396

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Hintermüller, M., Surowiec, T.: A bundle-free implicit programming approach for a class of elliptic MPECs in function space. Math. Program. Ser. A.https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/1326 (2015) (Accepted)

  40. 40.

    Hintermüller, M., Surowiec, T.M.: On the directional differentiability of the solution mapping for a class of variational inequalities of the second kind. Set-Valued Var. Anal. 26, 631–642 (2017). https://doi.org/10.1007/s11228-017-0408-9

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  42. 42.

    Jiang, W.G., Warby, M.K., Whiteman, J.R., Abbot, S., Shorter, W., Warwick, P., Wright, T., Munro, A., Munro, B.: Finite element modelling of high air pressure forming processes for polymer sheets. Comput. Mech. 31, 163–172 (2001)

    Article  Google Scholar 

  43. 43.

    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  44. 44.

    Kočvara, M., Outrata, J.: On a class of quasi-variational inequalities. Optim. Methods Softw. 5(4), 275–295 (1995)

    Article  Google Scholar 

  45. 45.

    Kunze, M., Rodrigues, J.F.: An elliptic quasi-variational inequality with gradient constraints and some of its applications. Math. Methods Appl. Sci. 23(10), 897–908 (2000). https://doi.org/10.1002/1099-1476(20000710)23:10<897::AID-MMA141>3.0.CO;2-H

  46. 46.

    Laetsch, T.H.: A uniqueness theorem for elliptic Q. V. I. J. Funct. Anal. 18, 286–288 (1975)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Lee, J.K., Virkler, T.L., Scott, C.E.: Effects of rheological properties and processing parameters on abs thermoforming. Polym. Eng. Sci. 41(2), 240–261 (2001)

    Article  Google Scholar 

  48. 48.

    Levy, A.: Sensitivity of solutions to variational inequalities on Banach spaces. SIAM J. Control Optim. 38(1), 50–60 (1999)

    MathSciNet  Article  Google Scholar 

  49. 49.

    Lions, J.L.: Sur le contrôle optimal de systèmes distribués. Enseign. Math. 2(19), 125–166 (1973)

    MATH  Google Scholar 

  50. 50.

    Ma, Z.M., Röckner, M.: Markov processes associated with positivity preserving coercive forms. Can. J. Math. 47(4), 817–840 (1995). https://doi.org/10.4153/CJM-1995-042-6

    MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)

    Article  Google Scholar 

  52. 52.

    Mignot, F., Puel, J.P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984). https://doi.org/10.1137/0322028

    MathSciNet  Article  MATH  Google Scholar 

  53. 53.

    Mordukhovich, B.S., Outrata, J.: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18(2), 389–412 (2007). https://doi.org/10.1137/060665609

    MathSciNet  Article  MATH  Google Scholar 

  54. 54.

    Mosco, U.: Convergence of convex sets and solutions of variational inequalities. Adv. Math. 3(4), 510–585 (1969)

    MathSciNet  Article  Google Scholar 

  55. 55.

    Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J.P., Lami Dozo, E.J., Mawhin, J., Waelbroeck, L. (eds.) Nonlinear Operators and the Calculus of Variations, pp. 83–156. Springer, Berlin (1976). https://doi.org/10.1007/BFb0079943

    Chapter  Google Scholar 

  56. 56.

    Mosco, U., Joly, J.L., Troianiello, G.M.: On the regular solution of a quasi-variational inequality connected to a problem of stochastic impulse control. J. Math. Anal. Appl. 61, 357–369 (1977)

    MathSciNet  Article  Google Scholar 

  57. 57.

    Nam, G.J., Ahn, K.H., Lee, J.W.: Three-dimensional simulation of thermoforming process and its comparison with experiments. Polym. Eng. Sci. 40(10), 2232–2240 (2000)

    Article  Google Scholar 

  58. 58.

    Outrata, J.: Semismoothness in parametrized quasi-variational inequalities. In: System Modelling and Optimization (Prague, 1995), pp. 203–210. Chapman & Hall, London (1996)

  59. 59.

    Outrata, J.: Solution behaviour for parameter-dependent quasi-variational inequalities. RAIRO Rech. Opér. 30(4), 399–415 (1996). https://doi.org/10.1051/ro/1996300403991

    MathSciNet  Article  MATH  Google Scholar 

  60. 60.

    Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Norwell (1998)

    Book  Google Scholar 

  61. 61.

    Outrata, J., Zowe, J.: A Newton method for a class of quasi-variational inequalities. Comput. Optim. Appl. 4(1), 5–21 (1995). https://doi.org/10.1007/BF01299156

    MathSciNet  Article  MATH  Google Scholar 

  62. 62.

    Penot, J.P.: Calculus Without Derivatives. Graduate Texts in Mathematics, vol. 266. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4538-8

    Book  MATH  Google Scholar 

  63. 63.

    Prigozhin, L.: Sandpiles and river networks: extended systems with non-local interactions. Phys. Rev. E 49, 1161–1167 (1994)

    MathSciNet  Article  Google Scholar 

  64. 64.

    Prigozhin, L.: On the Bean critical-state model in superconductivity. Eur. J. Appl. Math. 7, 237–247 (1996)

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Prigozhin, L.: Sandpiles, river networks, and type-II superconductors. Free Bound. Probl. News 10, 2–4 (1996)

    Google Scholar 

  66. 66.

    Prigozhin, L.: Variational model of sandpile growth. Eur. J. Appl. Math. 7(3), 225–235 (1996). https://doi.org/10.1017/S0956792500002321

    MathSciNet  Article  MATH  Google Scholar 

  67. 67.

    Rodrigues, J.F.: Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies, vol. 134. North-Holland Publishing Co., Amsterdam (1987). (Notas de Matemática [Mathematical Notes], 114)

    Book  Google Scholar 

  68. 68.

    Rodrigues, J.F., Santos, L.: A parabolic quasi-variational inequality arising in a superconductivity model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(1), 153–169 (2000)

    MathSciNet  MATH  Google Scholar 

  69. 69.

    Shapiro, A.: On concepts of directional differentiability. J. Optim. Theory Appl. 66(3), 477–487 (1990). https://doi.org/10.1007/BF00940933

    MathSciNet  Article  MATH  Google Scholar 

  70. 70.

    Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  71. 71.

    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  72. 72.

    Tartar, L.: Inéquations quasi variationnelles abstraites. C. R. Acad. Sci. Paris 178, 1193–1196 (1974)

    MATH  Google Scholar 

  73. 73.

    Toyoizumi, H.: Continuous dependence on obstacles in variational inequalities. Funkc. Ekvacioj 34, 103–115 (1991)

    MathSciNet  MATH  Google Scholar 

  74. 74.

    Wachsmuth, G.: Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Optim. 24(4), 1914–1932 (2014)

    MathSciNet  Article  Google Scholar 

  75. 75.

    Warby, M.K., Whiteman, J.R., Jiang, W.G., Warwick, P., Wright, T.: Finite element simulation of thermoforming processes for polymer sheets. Math. Comput. Simul. 61, 209–218 (2003)

    MathSciNet  Article  Google Scholar 

  76. 76.

    Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Contributions to Nonlinear Functional Analysis, pp. 237–424 (1971). http://www.ams.org/mathscinet-getitem?mr=52:9014

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos N. Rautenberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was carried out in the framework of MATHEON supported by the Einstein Foundation Berlin within the ECMath projects OT1, SE5, CH12 and SE15/SE19 as well as project A-AP24. The authors further acknowledge the support of the DFG through the DFG-SPP 1962: Priority Programme “Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization” within Projects 10, 11, and 13, through Grant no. HI 1466/7-1 Free Boundary Problems and Level Set Methods, and SFB/TRR154.

Communicated by L. Caffarelli.

A Simplification of the Laplace–Beltrami operator

A Simplification of the Laplace–Beltrami operator

Define \(T(r) := {\hat{T}}(r,{\varPhi }(u)(r))\) so that \(T:[0,1]\rightarrow {\mathbb {R}}\). We want to write \({\varDelta }_{\varGamma } {\hat{T}}\) in terms of \({\varDelta } T\). With \(w:={\varPhi }(u)\), the metric tensor is \(g_{11}=g = 1+ (w')^2\) and its inverse is \(g^{11}={1}\slash (1+(w')^2)=g^{-1}\) and so the Laplace–Beltrami of a function \({\hat{H}}:{\varGamma } \rightarrow {\mathbb {R}}\) can be written as

$$\begin{aligned} {\varDelta }_{\varGamma } {\hat{H}} = \frac{1}{\sqrt{g}}(g^{11}\sqrt{g}H')' \end{aligned}$$

where \(H:[0,L] \rightarrow {\mathbb {R}}\) is defined by \(H(r) = {\hat{H}}(r,w(r))\). Thus

$$\begin{aligned} {\varDelta }_{\varGamma } {\hat{H}} =\frac{H''}{g} - \frac{H'g'}{2g^2}. \end{aligned}$$

Noticing that \(g' = 2w'w''\), the above reads

$$\begin{aligned} {\varDelta }_{\varGamma } {\hat{H}}&=\frac{H''}{1+(w')^2} - \frac{w'w''H'}{(1+(w')^2)^2}. \end{aligned}$$

And now picking \({\hat{H}}={\hat{T}}\), we find

$$\begin{aligned} {\varDelta }_{\varGamma } {\hat{T}}&=\frac{{\varDelta } T}{1+({\varPhi }(u)')^2} - \frac{T'{\varPhi }(u)'{\varDelta } {\varPhi }(u)}{(1+({\varPhi }(u)')^2)^2}. \end{aligned}$$

Then if \(x=(x_1,x_2) = (r, {\varPhi }(r))\) the Eq. (54) becomes

$$\begin{aligned} kT(r) - \frac{{\varDelta } T(r)}{1+({\varPhi }(u)'(r))^2} + \frac{T'(r){\varPhi }(u)'(r){\varDelta } {\varPhi }(u)(r)}{(1+({\varPhi }(u)'(r))^2)^2}&= g({\varPhi }(r)-u(r)). \end{aligned}$$

In order to deduce (50) we have taken \({\varPhi }(u)'\) to be close to zero in the equality above.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alphonse, A., Hintermüller, M. & Rautenberg, C.N. Directional differentiability for elliptic quasi-variational inequalities of obstacle type. Calc. Var. 58, 39 (2019). https://doi.org/10.1007/s00526-018-1473-0

Download citation

Mathematics Subject Classification

  • 47J20
  • 49J40
  • 49J52
  • 49J50