Skip to main content
Log in

Existence of optimal transport maps in very strict \(CD(K,\infty )\) -spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We introduce a more restrictive version of the strict \(CD(K,\infty )\) -condition, the so-called very strict \(CD(K,\infty )\) -condition, and show the existence of optimal maps in very strict \(CD(K,\infty )\) -spaces despite the possible lack of uniqueness of optimal plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Lee, P.: Optimal transportation under nonholonomic constraints. Trans. Am. Math. Soc. 361(11), 6019–6047 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Rigot, S.: Optimal mass transportation in the Heisenberg group. J. Funct. Anal. 208(2), 261–301 (2004)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with \(\sigma \)-finite measure. Trans. Am. Math. Soc. 367(7), 4661–4701 (2015)

    Article  MathSciNet  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bertrand, J.: Existence and uniqueness of optimal maps on Alexandrov spaces. Adv. Math. 219(3), 838–851 (2008)

    Article  MathSciNet  Google Scholar 

  6. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Burago, D., Burago, Y., Ivanov, Sergei: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  8. Cavalletti, F., Huesmann, M.: Existence and uniqueness of optimal transport maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(6), 1367–1377 (2015)

    Article  MathSciNet  Google Scholar 

  9. Cavalletti, F., Mondino, A.: Optimal maps in essentially non-branching spaces. Commun. Contemp. Math. 19(6), 1750007 (2017). 27

    Article  MathSciNet  Google Scholar 

  10. Figalli, A., Rifford, L.: Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal. 20(1), 124–159 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gigli, N.: Optimal maps in non branching spaces with Ricci curvature bounded from below. Geom. Funct. Anal. 22(4), 990–999 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gigli, N., Mondino, A., Savaré, Giuseppe: Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. (3) 111(5), 1071–1129 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Gigli, N., Rajala, T., Sturm, K.-T.: Optimal maps and exponentiation on finite-dimensional spaces with Ricci curvature bounded from below. J. Geom. Anal. 26(4), 2914–2929 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kell, Martin: Transport maps, non-branching sets of geodesics and measure rigidity. Adv. Math. 320, 520–573 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ketterer, C., Rajala, T.: Failure of topological rigidity results for the measure contraction property. Potential Anal. 42(3), 645–655 (2015)

    Article  MathSciNet  Google Scholar 

  16. Lisini, S.: Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differ. Equ. 28(1), 85–120 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  Google Scholar 

  18. McCann, R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MathSciNet  Google Scholar 

  19. Rajala, T., Sturm, K.-T.: Non-branching geodesics and optimal maps in strong \(CD(K,\infty )\)-spaces. Calc. Var. Partial Differ. Equ. 50(3), 831–846 (2014)

    Article  MathSciNet  Google Scholar 

  20. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  21. Villani, C.: Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Old and New, vol. 338. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Schultz.

Additional information

Communicated by L. Ambrosio.

Author is partially supported by the Academy of Finland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, T. Existence of optimal transport maps in very strict \(CD(K,\infty )\) -spaces. Calc. Var. 57, 139 (2018). https://doi.org/10.1007/s00526-018-1414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1414-y

Mathematics Subject Classification

Navigation