Skip to main content
Log in

Blocking and invasion for reaction–diffusion equations in periodic media

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate the large time behavior of solutions of reaction–diffusion equations with general reaction terms in periodic media. We first derive some conditions which guarantee that solutions with compactly supported initial data invade the domain. In particular, we relate such solutions with front-like solutions such as pulsating traveling fronts. Next, we focus on the homogeneous bistable equation set in a domain with periodic holes, and specifically on the cases where fronts are not known to exist. We show how the geometry of the domain can block or allow invasion. We finally exhibit a periodic domain on which the propagation takes place in an asymmetric fashion, in the sense that the invasion occurs in a direction but is blocked in the opposite one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Initial data and solutions are always understood to be bounded in order to avoid non-uniqueness issues.

References

  1. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)

    Article  MathSciNet  Google Scholar 

  2. Berestycki, H., Bouhours, J., Chapuisat, G.: Front blocking and propagation in cylinders with varying cross section. Calc. Var. Part. Differ. Equ. 55(3), paper no. 44, 32 (2016)

  3. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8), 949–1032 (2002)

    Article  MathSciNet  Google Scholar 

  4. Berestycki, H., Hamel, F.: Non-existence of travelling front solutions of some bistable reaction–diffusion equations. Adv. Differ. Equ. 5(4–6), 723–746 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Hamel, F., Matano, H.: Bistable traveling waves around an obstacle. Commun. Pure Appl. Math. 62(6), 729–788 (2009)

    Article  MathSciNet  Google Scholar 

  6. Berestycki, H., Hamel, F., Rossi, L.: Liouville-type results for semilinear elliptic equations in unbounded domains. Ann. Mat. Pura Appl. (4) 186(3), 469–507 (2007)

    Article  MathSciNet  Google Scholar 

  7. Berestycki, H., Lions, P.-L.: Une méthode locale pour l’existence de solutions positives de problèmes semi-linéaires elliptiques dans \({ R}^{N}\). J. Anal. Math. 38, 144–187 (1980)

    Article  Google Scholar 

  8. Calderón, A.-P.: Lebesgue spaces of differentiable functions and distributions. In: Proceedings of Symposium on Pure Mathematics, vol. IV, pp. 33–49. American Mathematical Society, Providence, RI (1961)

  9. Ducasse, R.: Propagation properties of reaction–diffusion equations in periodic domains (2017). arXiv:1709.07197

  10. Ducrot, A.: A multi-dimensional bistable nonlinear diffusion equation in a periodic medium. Math. Ann. 366(1–2), 783–818 (2016)

    Article  MathSciNet  Google Scholar 

  11. Fisher, R.A.: The wave of advantage of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  Google Scholar 

  12. Freidlin, M.I.: On wavefront propagation in periodic media. In: Stochastic Analysis and Applications. Advanced Probability Related Topics, vol. 7, pp. 147–166. Dekker, New York (1984)

  13. Gärtner, J., Freĭdlin, M.I.: The propagation of concentration waves in periodic and random media. Dokl. Akad. Nauk SSSR 249(3), 521–525 (1979)

    MathSciNet  Google Scholar 

  14. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin (1983)

  16. Giletti, T., Rossi, L.: Pulsating fronts for multidimensional bistable and multistable equations (2018) (in preparation)

  17. Kolmogorov, A.N., Petrovskiĭ, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Etat. Moscow Ser. Internat. Math. Mec. Sect. A 1, 1–26 (1937)

    Google Scholar 

  18. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, RI (1967)

  19. Morse, A.P.: The behavior of a function on its critical set. Ann. Math. (2) 40(1), 62–70 (1939)

    Article  MathSciNet  Google Scholar 

  20. Rossi, L.: The Freidlin–Gärtner formula for general reaction terms. Adv. Math. 317, 267–298 (2017)

    Article  MathSciNet  Google Scholar 

  21. Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30(1), 143–160 (1986)

    Article  MathSciNet  Google Scholar 

  22. Stampacchia, G.: Problemi al contorno ellitici, con dati discontinui, dotati di soluzionie hölderiane. Ann. Mat. Pura Appl. 4(51), 1–37 (1960)

    Article  MathSciNet  Google Scholar 

  23. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  24. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45(6), 511–548 (2002)

    Article  MathSciNet  Google Scholar 

  25. Xin, J.X.: Existence and nonexistence of traveling waves and reaction–diffusion front propagation in periodic media. J. Stat. Phys. 73(5–6), 893–926 (1993)

    Article  MathSciNet  Google Scholar 

  26. Xin, X.: Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Differ. Equ. 3(4), 541–573 (1991)

    Article  MathSciNet  Google Scholar 

  27. Xin, X.: Existence and uniqueness of travelling waves in a reaction–diffusion equation with combustion nonlinearity. Indiana Univ. Math. J. 40(3), 985–1008 (1991)

    Article  MathSciNet  Google Scholar 

  28. Zlatos, A.: Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(7), 1687–1705 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Rossi.

Additional information

Communicated by P. Rabinowitz.

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement No. 321186—ReaDi—Reaction–Diffusion Equations, Propagation and Modeling, and from the French National Research Agency (ANR), within project NONLOCAL ANR-14-CE25-0013. During this research, Luca Rossi was on academic leave from the University of Padova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducasse, R., Rossi, L. Blocking and invasion for reaction–diffusion equations in periodic media. Calc. Var. 57, 142 (2018). https://doi.org/10.1007/s00526-018-1412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1412-0

Mathematics Subject Classification

Navigation