Skip to main content
Log in

Pseudo-harmonic maps from closed pseudo-Hermitian manifolds to Riemannian manifolds with nonpositive sectional curvature

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we use heat flow method to prove the existence of pseudo-harmonic maps from closed pseudo-Hermitian manifolds to Riemannian manifolds with nonpositive sectional curvature, which is a generalization of Eells–Sampson’s existence theorem. Furthermore, when the target manifold has negative sectional curvature, we analyze horizontal energy of geometric homotopy of two pseudo-harmonic maps and obtain that if the image of a pseudo-harmonic map is neither a point nor a closed geodesic, then it is the unique pseudo-harmonic map in the given homotopic class. This is a generalization of Hartman’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barletta, E., Dragomir, S., Urakawa, H.: Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds. Indiana Univ. Math. J. 50, 719–746 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bony, J.M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier 19(1), 277–304 (1969)

    Article  MathSciNet  Google Scholar 

  3. Chang, S.C., Chang, T.H.: On the existence of pseudoharmonic maps from pseudohermitian manifolds into Riemannian manifolds with nonpositive sectional curvature. Asian J. Math. 17(1), 1–16 (2013)

    Article  MathSciNet  Google Scholar 

  4. Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Eells, J., Lemaire, L.: Selected Topics in Harmonic Maps. American Mathematical Society, Providence (1983)

    Book  Google Scholar 

  6. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  7. Folland, G.B., Stein, E.M.: Estimates for the \(\bar{\partial _b }\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27(4), 429–522 (1974)

    Article  Google Scholar 

  8. Greenleaf, A.: The first eigenvalue of a sublaplacian on a pseudohermitian manifold. Commun. Partial Differ. Equ. 10(2), 191–217 (1985)

    Article  MathSciNet  Google Scholar 

  9. Hartman, P.: On homotopic harmonic maps. Can. J. Math. 19(4), 673–687 (1967)

    Article  MathSciNet  Google Scholar 

  10. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119(1), 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  11. Jerison, D., Sánchez-Calle, A.: Subelliptic, second order differential operators. In: Complex Analysis III, pp. 46–77. Springer (1987)

  12. Jost, J., Xu, C.: Subelliptic harmonic maps. Trans. Am. Math. Soc. 350(11), 4633–4649 (1998)

    Article  MathSciNet  Google Scholar 

  13. Jost, J., Yang, Y.: Heat flow for horizontal harmonic maps into a class of Carnot–Carathéodory spaces. Math. Res. Lett. 12(4), 513–529 (2005)

    Article  MathSciNet  Google Scholar 

  14. Lee, J.M.: Pseudo-Einstein structures on CR manifolds. Am. J. Math. 110(1), 157–178 (1988)

    Article  MathSciNet  Google Scholar 

  15. Moser, J.: A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17(1), 101–134 (1964)

    Article  MathSciNet  Google Scholar 

  16. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155(1), 103–147 (1985)

    Article  MathSciNet  Google Scholar 

  17. Ren, Y.B., Yang, G.L., Chong, T.: Liouville theorem for pseudoharmonic maps from Sasakian manifolds. J. Geom. Phys. 81, 47–61 (2014)

    Article  MathSciNet  Google Scholar 

  18. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(1), 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  19. Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78(1), 143–160 (1984)

    Article  MathSciNet  Google Scholar 

  20. Schoen, R., Yau, S.T.: Compact group actions and the topology of manifolds with non-positive curvature. Topology 18(4), 361–380 (1979)

    Article  MathSciNet  Google Scholar 

  21. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986)

    Article  MathSciNet  Google Scholar 

  22. Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differ. Geom. 13(1), 25–41 (1978)

    Article  MathSciNet  Google Scholar 

  23. Zhou, Z.R.: Heat flows of subelliptic harmonic maps into Riemannian manifolds with nonpositive curvatures. J. Geom. Anal. 23, 471–489 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to Professor Yuxin Dong for constant encouragements and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Ren.

Additional information

Communicated by A. Chang.

Supported by NSFC Tianyuan fund for Mathematics Grant No. 11626217.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Yang, G. Pseudo-harmonic maps from closed pseudo-Hermitian manifolds to Riemannian manifolds with nonpositive sectional curvature. Calc. Var. 57, 128 (2018). https://doi.org/10.1007/s00526-018-1411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1411-1

Mathematics Subject Classification

Navigation