Skip to main content
Log in

General transport problems with branched minimizers as functionals of 1-currents with prescribed boundary

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

A prominent model for transportation networks is branched transport, which seeks the optimal transportation scheme to move material from a given initial to a given final distribution. The cost of the scheme encodes a higher transport efficiency the more mass is moved together, which automatically leads to optimal transportation networks with a hierarchical branching structure. The two major existing model formulations use either mass fluxes (vector-valued measures, Eulerian formulation) or patterns (probabilities on the space of particle paths, Lagrangian formulation). In the branched transport problem the transportation cost is a fractional power of the transported mass. In this paper we instead analyse the much more general class of transport problems in which the transportation cost is merely a nonnegative increasing and subadditive function (in a certain sense this is the broadest possible generalization of branched transport). In particular, we address the problem of the equivalence of the above-mentioned formulations in this wider context. However, the newly-introduced class of transportation costs lacks strict concavity which complicates the analysis considerably. New ideas are required, in particular, it turns out convenient to state the problem via 1-currents. Our analysis also includes the well-posedness, some network properties, as well as a metrization and a length space property of the model cost, which were previously only known for branched transport. Some already existing arguments in that field are given a more concise and simpler form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Brancolini, A., Buttazzo, G.: Optimal networks for mass transportation problems. ESAIM Control Optim. Calc. Var. 11(1), 88–101 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banavar, J.R., Colaiori, F., Flammini, A., Maritan, A., Rinaldo, A.: Scaling, optimality, and landscape evolution. J. Stat. Phys. 104(1), 1–48 (2001)

    Article  MATH  Google Scholar 

  3. Bernot, M., Caselles, V., Morel, J.-M.: Traffic plans. Publ. Mat. 49(2), 417–451 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernot, M., Caselles, V., Morel, J.-M.: The structure of branched transportation networks. Calc. Var. Partial Differ. Equ. 32(3), 279–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernot, M., Caselles, V., Morel, J.-M.: Optimal Transportation Networks, Volume 1955 of Lecture Notes in Mathematics. Models and Theory. Springer, Berlin (2009)

  6. Bernot, M.: Optimal Transport and Irrigation. Ph.D. thesis, École normale supérieure de Cachan (2005). https://tel.archives-ouvertes.fr/tel-00132078/. Accessed 9 July 2017

  7. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  8. Blumenthal, L.M.: Theory and Applications of Distance Geometry, 2nd edn. Chelsea Publishing Co., New York (1970)

    MATH  Google Scholar 

  9. Buttazzo, G., Pratelli, A., Solimini, S., Stepanov, E.: Optimal Urban Networks Via Mass Transportation. Lecture Notes in Mathematics, vol. 1961. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  10. Bredies, K., Pock, T., Wirth, B.: Convex relaxation of a class of vertex penalizing functionals. J. Math. Imaging Vis. 47(3), 278–302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brancolini, A., Rossmanith, C., Wirth, B.: Optimal micropatterns in 2D transport networks and their relation to image inpainting. Arch. Ration. Mech. Anal. 228(1), 279–308 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brancolini, A., Solimini, S.: On the Hölder regularity of the landscape function. Interfaces Free Bound. 13(2), 191–222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brancolini, A., Solimini, S.: Fractal regularity results on optimal irrigation patterns. J. Math. Pures Appl. (9) 102(5), 854–890 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brancolini, A., Wirth, B.: Equivalent formulations for the branched transport and urban planning problems. J. Math. Pures Appl. 106(4), 695–724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brancolini, A., Wirth, B.: Optimal energy scaling for micropatterns in transport networks. SIAM J. Math. Anal. 49(1), 311–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colombo, M., De Rosa, A., Marchese, A., Stuvard, S.: On the lower semicontinuous envelope of functionals defined on polyhedral chains. Nonlinear Anal. 163, 201–215 (2017). https://doi.org/10.1016/j.na.2017.08.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Dolbeault, J., Nazaret, B., Savaré, G.: A new class of transport distances between measures. Calc. Var. Partial Differ. Equ. 34(2), 193–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Edgar, G.A.: Fine variation and fractal measures. Real Anal. Exchange 20(1), 256–280 (1994/95)

  19. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

  20. Fleming, W.H.: Flat chains over a finite coefficient group. Trans. Am. Math. Soc. 121, 160–186 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Volume 28 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)

  22. Kichenassamy, S.: Compactness theorems for differential forms. Commun. Pure Appl. Math. 42(1), 47–53 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities, 2nd edn. Birkhäuser, Basel. Cauchy’s equation and Jensen’s inequality, Edited and with a preface by Attila Gilányi (2009)

  24. Laatsch, R.G.: Subadditive Functions of One Real Variable. Ph.D. thesis, Oklahoma State University (1962). https://shareok.org/handle/11244/30626. Accessed 9 July 2017

  25. Michell, A.G.M.: LVIII. The limits of economy of material in frame-structures. Philos. Mag. Ser. 6 8(47), 589–597 (1904)

    Article  MATH  Google Scholar 

  26. Maddalena, F., Solimini, S.: Transport distances and irrigation models. J. Convex Anal. 16(1), 121–152 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Maddalena, F., Solimini, S.: Synchronic and asynchronic descriptions of irrigation problems. Adv. Nonlinear Stud. 13(3), 583–623 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maddalena, F., Solimini, S., Morel, J.-M.: A variational model of irrigation patterns. Interfaces Free Bound. 5(4), 391–415 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rodrguez-Iturbe, I., Rinaldo, A.: Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  30. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Company, New York (1988)

    MATH  Google Scholar 

  31. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  32. Santambrogio, F.: Optimal channel networks, landscape function and branched transport. Interfaces Free Bound. 9(1), 149–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Šilhavý, M.: Normal currents: structure, duality pairings and div–curl lemmas. Milan J. Math. 76(1), 275–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, vol. 3. Australian National University, Canberra (1983)

  35. Smirnov, S.K.: Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows. Algebra i Analiz 5(4), 206–238 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Šilhavý, M.: Divergence measure vectorfields: their structure and the divergence theorem. In: Mathematical Modelling of Bodies with Complicated Bulk and Boundary Behavior, Volume 20 of Quad. Mat., pp. 217–237. Department of Mathematics, Seconda University, Napoli, Caserta (2007)

  37. Villani, C.: Optimal Transport, Volume 338 of Grundlehren der Mathematischen Wissenschaften. Old and New. Springer, Berlin (2009)

  38. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton, NJ (1957)

    Book  MATH  Google Scholar 

  39. White, B.: The deformation theorem for flat chains. Acta Math. 183(2), 255–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. White, B.: Rectifiability of flat chains. Ann. Math. 150(1), 165–184 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xia, Q.: Optimal paths related to transport problems. Commun. Contemp. Math. 5(2), 251–279 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xia, Q.: Interior regularity of optimal transport paths. Calc. Var. Partial Differ. Equ. 20(3), 283–299 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xia, Q.: On landscape functions associated with transport paths. Discrete Contin. Dyn. Syst. 34(4), 1683–1700 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany. B.W.’s research was supported by the Alfried Krupp Prize for Young University Teachers awarded by the Alfried Krupp von Bohlen und Halbach-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Brancolini.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brancolini, A., Wirth, B. General transport problems with branched minimizers as functionals of 1-currents with prescribed boundary. Calc. Var. 57, 82 (2018). https://doi.org/10.1007/s00526-018-1364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1364-4

Mathematics Subject Classification

Navigation