Skip to main content
Log in

Weak KAM theory for discounted Hamilton–Jacobi equations and its application

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Weak KAM theory for discounted Hamilton–Jacobi equations and corresponding discounted Lagrangian/Hamiltonian dynamics is developed. Then it is applied to error estimates for viscosity solutions in the vanishing discount process. The main feature is to introduce and investigate the family of \(\alpha \)-limit points of minimizing curves, with some details in terms of minimizing measures. In error estimates, the family of \(\alpha \)-limit points is effectively exploited with properties of the corresponding dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anantharaman, N.: On the zero-temperature or vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics. J. Eur. Math. Soc. 6(2), 207–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anantharaman, N., Iturriaga, R., Padilla, P., Sanchez-Morgado, H.: Physical solutions of the Hamilton–Jacobi equation. Discret. Contin. Dyn. Syst. Ser. B 5(3), 513–528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernard, P.: Connecting orbits of time dependent Lagrangian systems. Ann. Inst. Fourier Grenoble 52(5), 1533–1568 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessi, U.: Aubry–Mather theory and Hamilton–Jacobi equations. Commun. Math. Phys. 235, 495–511 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Golse, F., Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190, 491–508 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Camilli, F., Capuzzo Dolcetta, I., Gomes, D.A.: Error estimates for the approximation of the effective Hamiltonian. Appl. Math. Optim. 57(1), 30–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  8. Davini, A., Fathi, A., Iturriaga, R., Zavidovique, M.: Convergence of the solutions of the discounted equation. Invent. Math. 206(1), 29–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davini, A., Fathi, A., Iturriaga, R., Zavidovique, M.: Convergence of the solutions of the discounted equation: the discrete case. Math. Z. 284(3–4), 1021–1034 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dumas, H.S.: Ergodization rates for linear flow on the torus. J. Dyn. Differ. Equ. 3, 593–610 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. E, W.: Aubry-Mather theory and periodic solutions of the forced Burgers equation. Commun. Pure Appl. Math. 52(7), 811–828 (1999)

  12. Evans, L.C., Gomes, D.: Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Ration. Mech. Anal. 157(1), 1–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fathi, A.: A weak KAM theorem and Mather’s theory of Lagrangian systems [Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, (French)]. C. R. Acad. Sci. Paris Sér. I Math. 324(9), 1043–1046 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fathi, A.: Heteroclinic orbits and the Peierls set [Orbites hétéroclines et ensemble de Peierls, (French)]. C. R. Acad. Sci. Paris Sér. I Math. 326(10), 1213–1216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  16. Gomes, D.A.: Perturbation theory for viscosity solutions of Hamilton–Jacobi equations and stability of Aubry–Mather sets. SIAM J. Math. Anal. 35(1), 135–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomes, D.A.: Generalized Mather problem and selection principles for viscosity solutions and Mather measures. Adv. Calc. Var. 1(3), 291–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gomes, D.A., Mitake, H., Tran, H.V.: The selection problem for discounted Hamilton–Jacobi equations: some non-convex cases. J. Math. Soc. Jpn. 70(1), 345–364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. In: Applied Mathematical Sciences, vol. 42. Springer, New York (1990). ISBN 0-387-90819-6

  20. Ishii, H., Mitake, H., Tran, H.V.: The vanishing discount problem and viscosity Mather measures. Part 1: the problem on a torus. J. Math. Pures Appl. (9) 108(2), 125–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jauslin, H.R., Kreiss, H.O., Moser, J.: On the forced Burgers equation with periodic boundary conditions. Proc. Symp. Pure Math. 65, 133–153 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le, N. Q., Mitake, H., Tran, H. V.: Dynamical and Geometric Aspects of Hamilton–Jacobi and Linearized Monge–Ampere Equations. Lecture Notes in Mathematics, vol. 2183. Springer (2017). https://doi.org/10.1007/978-3-319-54208-9

  23. Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9, 273–310 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marò, S., Sorrentino, A.: Aubry–Mather theory for conformally symplectic systems. Commun. Math. Phys. 354(2), 775–808 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mather, J.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 43(2), 169–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mitake, H., Tran, H.V.: Selection problems for a discounted degenerate viscous Hamilton–Jacobi equation. Adv. Math. 306, 684–703 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Soga, K.: More on stochastic and variational approach to the Lax–Friedrichs scheme. Math. Comput. 85, 2161–2193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soga, K.: Selection problems of \({\mathbb{Z}}^2\)-periodic entropy solutions and viscosity solutions. Calc. Var. PDEs 56, 4 (2017). https://doi.org/10.1007/s00526-017-1208-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Albert Fathi for valuable comments on this work. The authors are grateful to Professors Diogo A. Gomes, Yifeng Yu and one of the referees for valuable comments for the previous version of the manuscript. The first author is partially supported by JSPS Grants: KAKENHI #15K17574, #26287024, #16H03948. The second author is partially supported by JSPS Grant-in-aid for Young Scientists (B) #15K21369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Soga.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitake, H., Soga, K. Weak KAM theory for discounted Hamilton–Jacobi equations and its application. Calc. Var. 57, 78 (2018). https://doi.org/10.1007/s00526-018-1359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1359-1

Mathematics Subject Classification

Navigation