Quasilinear equations with natural growth in the gradients in spaces of Sobolev multipliers

Abstract

We study the existence problem for a class of nonlinear elliptic equations whose prototype is of the form \(-\Delta _p u = |\nabla u|^p + \sigma \) in a bounded domain \(\Omega \subset \mathbb {R}^n\). Here \(\Delta _p\), \(p>1\), is the standard p-Laplacian operator defined by \(\Delta _p u=\mathrm{div}\, (|\nabla u|^{p-2}\nabla u)\), and the datum \(\sigma \) is a signed distribution in \(\Omega \). The class of solutions that we are interested in consists of functions \(u\in W^{1,p}_0(\Omega )\) such that \(|\nabla u|\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\), a space pointwise Sobolev multipliers consisting of functions \(f\in L^{p}(\Omega )\) such that

$$\begin{aligned} \int _{\Omega } |f|^{p} |\varphi |^p dx \le C \int _{\Omega } (|\nabla \varphi |^p + |\varphi |^p) dx \quad \forall \varphi \in C^\infty (\Omega ), \end{aligned}$$

for some \(C>0\). This is a natural class of solutions at least when the distribution \(\sigma \) is nonnegative and compactly supported in \(\Omega \). We show essentially that, with only a gap in the smallness constants, the above equation has a solution in this class if and only if one can write \(\sigma =\mathrm{div}\, F\) for a vector field F such that \(|F|^{\frac{1}{p-1}}\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\). As an important application, via the exponential transformation \(u\mapsto v=e^{\frac{u}{p-1}}\), we obtain an existence result for the quasilinear equation of Schrödinger type \(-\Delta _p v = \sigma \, v^{p-1}\), \(v\ge 0\) in \(\Omega \), and \(v=1\) on \(\partial \Omega \), which is interesting in its own right.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equ. 222, 21–62 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Adimurthi, K., Phuc, N.C.: An end-point global gradient weighted estimate for quasilinear equations in non-smooth domains. Manuscr. Math. 150, 111–135 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Adimurthi, K., Phuc, N.C.: Nonlinear equations with gradient natural growth and distributional data, with applications to a Schrödinger type equation (2017) (preprint). https://arxiv.org/abs/1804.09612

  4. 4.

    Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 347–364 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19, 581–597 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Boccardo, L., Murat, F., Puel, J.-P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. (4) 152, 183–196 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Browder, F.E.: Existence theorems for nonlinear partial differential equations. In: Chern, S.-S., Smale, S. (eds.) Proceedings of Symposia in Pure Mathematics, vol. XVI, pp. 1–60. American Mathematical Society, Providence (1970)

  8. 8.

    Chang, S.-Y.A., Wilson, J.M., Wolff, T.H.: Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv. 60, 217–246 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Duc, D.M., Phuc, N.C., Nguyen, T.V.: Weighted Sobolev’s inequalities for bounded domains and singular elliptic equations. Indiana Univ. Math. J. 56, 615–642 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Fefferman, C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Ferone, V., Murat, F.: Quasilinear problems having natural growth in the gradient: an existence result when the source term is small. In: Équations aux dérivées partielles et applications, Articles dédiés à Jacques-Louis Lions, Gauthier-Villars, Paris, pp. 497–515 (1998)

  12. 12.

    Ferone, V., Murat, F.: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal. 42, 1309–1326 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Ferone, V., Murat, F.: Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces. J. Differ. Equ. 256, 577–608 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Frazier, M.W., Verbitsky, I.E.: Positive solutions to Schrödinger’s equation and the exponential integrability of the balayage. Ann. Inst. Fourier (Grenoble) 67, 1393–1425 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Hajlasz, P., Martio, O.: Traces of Sobolev functions on fractal type sets and characterization of extension domains. J. Funct. Anal. 143, 221–246 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Hamid, H.A., Bidaut-Veron, M.F.: On the connection between two quasilinear elliptic problems with source terms of order \(0\) or \(1\). Commun. Contemp. Math. 12, 727–788 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Hansson, K., Maz’ya, V.G., Verbitsky, I.E.: Criteria of solvability for multidimensional Riccati equations. Ark. Math. 37, 87–120 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Jaye, B., Maz’ya, V.G., Verbitsky, I.E.: Existence and regularity of positive solutions of elliptic equations of Schrdinger type. J. Anal. Math. 118, 577–621 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Jaye, B., Maz’ya, V.G., Verbitsky, I.E.: Quasilinear elliptic equations and weighted Sobolev–Poincaré inequalities with distributional weights. Adv. Math. 232, 513–542 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  MATH  Google Scholar 

  22. 22.

    Krug, J., Spohn, H.: Universality classes for deterministic surface growth. Phys. Rev. A (3) 38, 4271–4283 (1988)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kenig, C., Toro, T.: Free boundary regularity for harmonic measures and the Poisson kernel. Ann. Math. 150, 367–454 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Kenig, C., Toro, T.: Poisson kernel characterization of Reifenberg flat chord arc domains. Ann. Sci. École Norm. Sup. (4) 36, 323–401 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

    Google Scholar 

  26. 26.

    Maz’ya, V.G., Verbitsky, I.E.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. Ark. Math. 33, 81–115 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Maz’ya, V.G., Shaposhnikova, T.O.: The theory of Sobolev multipliers with applications to differential and integral operators, Grundlehren der math. Wissenschaften, vol. 337. Springer, Berlin (2009)

  28. 28.

    Mengesha, T., Phuc, N.C.: Quasilinear Ricatti type equations with distributional data in Morrey space framework. J. Differ. Equ. 260, 5421–5449 (2016)

    Article  MATH  Google Scholar 

  29. 29.

    Pérez, C.: Two weighted inequalities for potential and fractional type maximal operators. Indiana Univ. Math. J. 43, 663–683 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Reifenberg, E.: Solutions of the Plateau problem for \(m\)-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Sawyer, E.T., Wheeden, R.L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114, 813–874 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Sarason, D.: Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Toro, T.: Doubling and flatness: geometry of measures. Not. Am. Math. Soc. 44, 1087–1094 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karthik Adimurthi.

Additional information

K. Adimurthi was supported in part by National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2015R1A2A1A15053024). N.C. Phuc was supported in part by Simons Foundation, Award Number 426071.

Communicated by L. Caffarelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adimurthi, K., Nguyen, C.P. Quasilinear equations with natural growth in the gradients in spaces of Sobolev multipliers. Calc. Var. 57, 74 (2018). https://doi.org/10.1007/s00526-018-1357-3

Download citation

Mathematics Subject Classification

  • 35J66
  • 35J92
  • 35A01