Skip to main content
Log in

A boundary value problem for the nonlinear Dirac equation on compact spin manifold

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The positive energy theorem is a significant subject in general relativity theory. In Witten’s proof of this theorem, the solution of a free Dirac equation which is a spinor filed plays an important role. In order to prove the positive energy theorem for black holes, Gibbons, Hawking, Horowitz and Perry imposed a local boundary condition on the apparent horizon of the black hole. Then the Dirac equation under this boundary condition forms an elliptic boundary value problem. In fact, this kind of local boundary condition can be generally defined by a Chirality operator on the Dirac bundle over a spin manifold. In this paper, by establishing a proper analysis setting and developing variational arguments, we study a nonlinear Dirac equation on a compact spin manifold (Mg) which satisfies the local boundary condition with respect to a Chirality operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann, B.: A Variational Problem in Conformal Spin Geometry. Universität Hamburg, Habilitationsschift (2003)

    MATH  Google Scholar 

  2. Balabane, M., Cazenave, T., Douady, A., Merle, F.: Existence of excited states for a nonlinear Dirac field. Commun. Math. Phys. 119, 153–176 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balabane, M., Cazenave, T., Vazquez, L.: Existence of standing waves for Dirac fields with singular nonlinearities. Commun. Math. Phys. 133, 53–74 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Ding, Y.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279, 1276–1288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Ding, Y.: Solutions of nonlinear Dirac equations. J. Differ. Equ. 226, 210–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunke, U.: Comparison of Dirac operators on manifolds with boundary. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento 30, 133–141 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Cazenave, T., Vazquez, L.: Existence of localized sollutions for a classical nonlinear Dirac field. Commun. Math. Phys. 105, 35–47 (1986)

    Article  MATH  Google Scholar 

  8. Ding, Y., Ruf, B.: Solutions of a nonlinear Dirac equation with external fields. Arch. Rational. Mech. Anal. 190(1), 57–82 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, Y., Li, J., Xu, T.: Bifurcation on compact spin manifold. Calc. Var. Partial Differ. Equ. 55, 4 (2016) Art.90

  10. Esteban, M., Séré, E.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171, 323–350 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedrich, T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence (2000)

    Book  MATH  Google Scholar 

  12. Farinell, S., Schwarz, G.: on the spectrum of the Dirac operator under boundary conditions. J. Geom. Phys. 28, 67–84 (1998)

    Article  MathSciNet  Google Scholar 

  13. Gibbons, G.W., Hawking, S.W., Horowitz, G.T., Perry, M.J.: Positive mass theorems for black holes. Commun. Math. Phys. 88, 295–308 (1983)

    Article  MathSciNet  Google Scholar 

  14. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97–111 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hijazi, O.: Spectral Properties of the Dirac Operator and Geometrical Structures. Geometric Methods for Quantum Field Theory, pp. 116–169. World Sci. Publ., River Edge (2001)

    Book  MATH  Google Scholar 

  16. Hijazi, O., Montiel, S., Roldán, A.: Eigenvalue boundary problems for the Dirac operator. Commun. Math. Phys. 231, 375–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hijazi, O., Montiel, S., Zhang, X.: Eigenvalues of the Dirac operator on manifolds with boundary. Commun. Math. Phys. 221, 255–265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Isobe, T.: Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds. J. Funct. Anal. 260, 253–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Isobe, T.: On the existence of nonlinear Dirac-geodesics on compact manifolds. Calc. Var. Partial Differ. Equ. 43(1–2), 83–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lawson, H.B., Michelson, M.L.: Spin Geometry. Princeton University Press, Princeton (1989)

    Google Scholar 

  21. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence, RI (1986).

  22. Raulot, S.: A Sobolev-like inequality for the Dirac operator. J. Funct. Anal. 26, 1588–1617 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79, 231–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Witten, E.: A new proof of the psitive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for the useful suggestions. The work was supported partially by the National Science Foundation of China (NSFC 11331010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiongyue Li.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Li, J. A boundary value problem for the nonlinear Dirac equation on compact spin manifold. Calc. Var. 57, 72 (2018). https://doi.org/10.1007/s00526-018-1350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1350-x

Mathematics Subject Classification

Navigation