Skip to main content
Log in

Quantitative uniqueness of solutions to second order elliptic equations with singular potentials in two dimensions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this article, we study the vanishing order of solutions to second order elliptic equations with singular lower order terms in the plane. In particular, we derive lower bounds for solutions on arbitrarily small balls in terms of the Lebesgue norms of the lower order terms for all admissible exponents. Then we show that a scaling argument allows us to pass from these vanishing order estimates to estimates for the rate of decay of solutions at infinity. Our proofs rely on a new \(L^p - L^q\) Carleman estimate for the Laplacian in \(\mathbb {R}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, G.: Strong unique continuation for general elliptic equations in 2D. J. Math. Anal. Appl. 386(2), 669–676 (2012). https://doi.org/10.1016/j.jmaa.2011.08.029

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrein, W.O., Berthier, A.M., Georgescu, V.: \(L^{p}\)-inequalities for the Laplacian and unique continuation. Ann. Inst. Fourier (Grenoble) 31(3), 153–168 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakri, L.: Quantitative uniqueness for Schrödinger operator. Indiana Univ. Math. J. 61(4), 1565–1580 (2012). https://doi.org/10.1512/iumj.2012.61.4713

    Article  MathSciNet  MATH  Google Scholar 

  4. Barceló, B., Kenig, C.E., Ruiz, A., Sogge, C.D.: Weighted Sobolev inequalities and unique continuation for the Laplacian plus lower order terms. Ill. J. Math. 32(2), 230–245 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Kenig, C.E.: On localization in the continuous Anderson–Bernoulli model in higher dimension. Invent. Math. 161(2), 389–426 (2005). https://doi.org/10.1007/s00222-004-0435-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Davey, B., Zhu, J.: Quantitative uniqueness of solutions to second order elliptic equations with singular lower order terms (2017). ArXiv:1702.04742

  7. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988). https://doi.org/10.1007/BF01393691

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). (Reprint of the 1998 edition)

    MATH  Google Scholar 

  9. Han, Q., Lin, F.: Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, 2nd edn. Courant Institute of Mathematical Sciences, New York (2011)

    Google Scholar 

  10. Jerison, D.: Carleman inequalities for the Dirac and Laplace operators and unique continuation. Adv. Math. 62(2), 118–134 (1986). https://doi.org/10.1016/0001-8708(86)90096-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. (2) 121(3), 463–494 (1985). https://doi.org/10.2307/1971205. (With an appendix by E. M. Stein)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kenig, C., Wang, J.N.: Quantitative uniqueness estimates for second order elliptic equations with unbounded drift. Math. Res. Lett. 22(4), 1159–1175 (2015). https://doi.org/10.4310/MRL.2015.v22.n4.a10

    Article  MathSciNet  MATH  Google Scholar 

  13. Kenig, C.E., Nadirashvili, N.: A counterexample in unique continuation. Math. Res. Lett. 7(5–6), 625–630 (2000). https://doi.org/10.4310/MRL.2000.v7.n5.a8

    Article  MathSciNet  MATH  Google Scholar 

  14. Klein, A., Tsang, C.S.S.: Quantitative unique continuation principle for Schrödinger operators with singular potentials. Proc. Am. Math. Soc. 144(2), 665–679 (2016). https://doi.org/10.1090/proc12734

    Article  MATH  Google Scholar 

  15. Koch, H., Tataru, D.: Sharp counterexamples in unique continuation for second order elliptic equations. J. Reine Angew. Math. 542, 133–146 (2002). https://doi.org/10.1515/crll.2002.003

    MathSciNet  MATH  Google Scholar 

  16. Kukavica, I.: Quantitative uniqueness for second-order elliptic operators. Duke Math. J. 91(2), 225–240 (1998). https://doi.org/10.1215/S0012-7094-98-09111-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Mandache, N.: A counterexample to unique continuation in dimension two. Commun. Anal. Geom. 10(1), 1–10 (2002). https://doi.org/10.4310/CAG.2002.v10.n1.a1

    Article  MathSciNet  MATH  Google Scholar 

  18. Meshkov, V.Z.: On the possible rate of decay at infinity of solutions of second order partial differential equations. Math USSR SB 72, 343–361 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Regbaoui, R.: Unique continuation for differential equations of Schrödinger’s type. Commun. Anal. Geom. 7(2), 303–323 (1999). https://doi.org/10.4310/CAG.1999.v7.n2.a5

    Article  MathSciNet  MATH  Google Scholar 

  20. Schechter, M., Simon, B.: Unique continuation for Schrödinger operators with unbounded potentials. J. Math. Anal. Appl. 77(2), 482–492 (1980). https://doi.org/10.1016/0022-247X(80)90242-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Sogge, C.D.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53(1), 43–65 (1986). https://doi.org/10.1215/S0012-7094-86-05303-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, J.: Quantitative uniqueness of elliptic equations. Am. J. Math. 138(3), 733–762 (2016). https://doi.org/10.1353/ajm.2016.0027

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blair Davey.

Additional information

Communicated by F.H. Lin.

Davey is supported in part by the Simons Foundation Grant Number 430198. Zhu is supported in part by NSF Grant DMS-1656845.

Appendix

Appendix

In this section, we first present the proof of Lemma 3 for the case \(1<p<2\). The eigenfunction estimates in Lemma 2 play an important role in the argument. Then we prove a quantitative Caccioppoli inequality in dimension \(n=2\).

Proof of Lemma 3

We define a conjugated operator \(L^-_\tau \) of \(L^-\) by

$$\begin{aligned} L^-_\tau u=e^{-\tau \varphi (t)}L^-(e^{\tau \varphi (t)}u). \end{aligned}$$

With \(v=e^{\tau \varphi (t)}u\), it is equivalent to prove

$$\begin{aligned} \Vert t^{-{1}}u \Vert _{L^2(dtd\omega )}\le C \tau ^\beta \Vert t L^-_\tau u\Vert _{L^p(dtd\omega )}. \end{aligned}$$
(A.1)

From the definition of \(\varLambda \) and \(L^-\) in (11) and (12), the operator \(L^-_\tau \) can be written as

$$\begin{aligned} L^-_\tau =\sum _{k\ge 0} (\partial _t+\tau \varphi '(t)-k)P_k. \end{aligned}$$
(A.2)

Let \(M=\lceil 2\tau \rceil \). Since \(\displaystyle \sum _{k\ge 0} P_k v= v\), we split \(\displaystyle \sum _{k \ge 0} P_k v\) into

$$\begin{aligned} P^+_\tau =\sum _{k> M}P_k, \quad \quad P^-_\tau =\sum _{k=0}^{M}P_k. \end{aligned}$$

Then (A.1) is reduced to showing that

$$\begin{aligned} \Vert t^{-1} P^+_\tau {u} \Vert _{L^2(dtd\omega )} \le \tau ^{\beta }\Vert t{L_\tau ^- u} \Vert _{L^{{p}}(dtd\omega )} \end{aligned}$$
(A.3)

and

$$\begin{aligned} \Vert t^{-1} P^-_\tau {u}\Vert _{L^2(dtd\omega )}\le \tau ^\beta \Vert t {L_\tau ^- u} \Vert _{L^{{p}}(dtd\omega )} \end{aligned}$$
(A.4)

hold for all \(u \in C^\infty _c\left( (-\infty , \ t_0)\times S^{1} \right) \) and \(1< p < 2\). We first establish (A.3). From (A.2) and properties of the projection operator \(P_k\), it follows that

$$\begin{aligned} P_k L^-_\tau u= (\partial _t+\tau \varphi '(t)-k)P_k u. \end{aligned}$$
(A.5)

For \(u\in C^\infty _{0}\left( (-\infty , \ t_0)\times S^{1} \right) \), the solution \(P_k u\) of this first order differential equation is given by

$$\begin{aligned} P_k u(t, \omega ) =-\int _{-\infty }^{\infty } H(s-t)e^{k(t-s)+\tau \left[ \varphi (s)-\varphi (t)\right] } P_k L^-_\tau u (s,\omega )\, ds, \end{aligned}$$
(A.6)

where \(H(z)=1\) if \(z\ge 0\) and \(H(z)=0\) if \(z<0\).

For \(k\ge M \ge 2 \tau \), it can be shown that

$$\begin{aligned} H(s-t)e^{k(t-s)+\tau \left[ \varphi (s)-\varphi (t)\right] } \le e^{-\frac{1}{2}k|t-s|} \end{aligned}$$

for all \(s, t\in (-\infty , \ t_0)\). Taking the \(L^2\left( S^{1} \right) \)-norm in (A.6) yields that

$$\begin{aligned} \Vert P_k u(t, \cdot )\Vert _{L^2(S^{1})} \le \int _{-\infty }^{\infty } e^{-\frac{1}{2}k|t-s|} \Vert P_k L^-_\tau u(s, \cdot )\Vert _{L^2(S^{1})} \,ds. \end{aligned}$$

Applying the eigenfunction estimates (19) gives that

$$\begin{aligned} \Vert P_k u(t, \cdot )\Vert _{L^2(S^{1})} \le C \int _{-\infty }^{\infty } e^{-\frac{1}{2}k|t-s|} \Vert L^-_\tau u(s, \cdot )\Vert _{L^p(S^{1})} \,ds \end{aligned}$$

for all \(1\le p\le 2\). Furthermore, the application of Young’s inequality for convolution yields that

$$\begin{aligned} \Vert P_k u\Vert _{L^2(dt d\omega )} \le C \left( \int _{-\infty }^{\infty } e^{-\frac{\sigma }{2}k|z|} dz \right) ^{\frac{1}{\sigma }}\Vert L^-_\tau u\Vert _{L^p(dtd\omega )} \end{aligned}$$

with \(\frac{1}{\sigma }=\frac{3}{2}-\frac{1}{p}\). Therefore,

$$\begin{aligned} \Vert P_k u\Vert _{L^2(dt d\omega )} \le C k^{\frac{1}{p} - \frac{3}{2}} \Vert L^-_\tau u\Vert _{L^p(dtd\omega )}, \end{aligned}$$

where we have used the fact that

$$\begin{aligned} \left( \int _{-\infty }^{\infty } e^{-\frac{\sigma }{2}k|z|} dz \right) ^{\frac{1}{\sigma }}\le C k^{\frac{1}{p} - \frac{3}{2}}. \end{aligned}$$

Squaring and summing up \(k> M\) shows that

$$\begin{aligned} \sum _{k> M} \Vert P_k u\Vert ^2_{L^2(dt d\omega )} \le C \sum _{k> M} k^{\frac{2}{p} - 3} \Vert L^-_\tau u\Vert ^2_{L^p(dtd\omega )}. \end{aligned}$$

\(\displaystyle \sum _{k> M} k^{\frac{2}{p} - 3}\) converges if \(p>1\). If \(p=1\), \(\displaystyle \sum _{k> M} k^{\frac{2}{p}- 3}\) diverges. Therefore,

$$\begin{aligned} \Vert P^+_\tau u\Vert _{L^2(dtd\omega )} \le C\tau ^{\frac{1-p}{p}}\Vert L^-_\tau u\Vert _{L^p(dtd\omega )}, \end{aligned}$$

which implies estimate (A.3) since \(|t|\ge |t_0|\), where \(\left| t_0\right| \) is large.

Set \(N=\lceil \tau \varphi ^\prime (t)\rceil \). Recall that \(\varphi (t)=t+\log t^2\). By Taylor’s theorem, for all \(s, t \in (-\infty , \ t_0)\), we have

$$\begin{aligned} \varphi (s)-\varphi (t)&= \varphi '(t)(s-t)-\frac{1}{(s_0)^2}(s-t)^2, \end{aligned}$$
(A.7)

where \(s_0\) is some number between s and t. If \(s>t\), then

$$\begin{aligned} S_k(s, t) = e^{k(t-s) + \tau \left[ \varphi \left( s - \varphi \left( t \right) \right) \right] } \le e^{-(k-\tau \varphi '(t))(s-t)-\frac{\tau }{t^2}(s-t)^2}. \end{aligned}$$

Hence

$$\begin{aligned} H(s-t) S_k(s, t)\le e^{-|k- N ||s-t|-\frac{\tau }{t^2}(s-t)^2}. \end{aligned}$$
(A.8)

Furthermore, we consider the case \(N\le k\le M\). The summation of (A.6) over k shows that

$$\begin{aligned} \Vert \sum ^M_{k=N} P_k u(t, \cdot )\Vert _{L^2(S^{1})} \le \int _{-\infty }^{\infty } \Vert \sum ^M_{k=N} H(s-t)S_k(s,t) P_k L^-_\tau u(s, \cdot ) \Vert _{L^2(S^{1})}\, ds. \end{aligned}$$
(A.9)

Let \(c_k= H(s-t)S_k(s,t)\). It is clear that \(|c_k|\le 1\). Now we make use of Lemma 2. An application of estimate (14) shows that for all \(1< p < 2\)

$$\begin{aligned}&\Vert \sum ^M_{k=N}H(s-t)S_k(s,t) P_k L^-_\tau u(s, \cdot )\Vert _{L^2(S^{1})}\le \nonumber \\&C \left( \sum ^M_{k=N} H(s-t)|S_k(s,t)|^2 \right) ^{\frac{1}{p}-\frac{1}{2}} \Vert L^-_\tau u(s, \cdot ) \Vert _{L^p(S^{1})}. \end{aligned}$$
(A.10)

From (A.8), we have

$$\begin{aligned} \sum ^M_{k=N} H(s-t)|S_k(s,t)|^2&\le \left( \sum ^M_{k=N+1} e^{-2|k- N||s-t|}+1 \right) e^{ -\frac{2\tau }{t^2}(s-t)^2} \nonumber \\&\le C \left( \frac{1}{|s-t|}+1 \right) e^{ -\frac{\tau }{t^2}(s-t)^2} . \end{aligned}$$
(A.11)

Therefore, the last two inequalities imply that

$$\begin{aligned} \Vert \sum ^M_{k=N}H(s-t)S_k(s,t) P_k L^-_\tau u(s,\cdot )\Vert _{L^2(S^{1})}&\le C (|s-t|^{-\alpha _2}+1)e^{-\frac{\alpha _2\tau }{t^2}(s-t)^2}\Vert L^-_\tau u(s, \cdot ) \Vert _{L^p(S^{1})}, \end{aligned}$$

where \(\alpha _2=\frac{(2-p)}{2p}\). It can be shown that

$$\begin{aligned} e^{-\frac{\alpha _2\tau }{t^2}(s-t)^2}\le C|t|\left( 1+\sqrt{\tau }|s-t| \right) ^{-1}. \end{aligned}$$
(A.12)

Thus,

$$\begin{aligned} \Vert \sum ^M_{k=N}H(s-t)S_k(s,t) P_k L^-_\tau u(s,\cdot )\Vert _{L^2(S^{1})} \le \frac{C|t|(|s-t|^{-\alpha _2}+1)\Vert L^-_\tau u(s, \cdot ) \Vert _{L^p(S^{1})}}{1+\sqrt{\tau }|s-t|}. \end{aligned}$$

It follows from (A.9) that

$$\begin{aligned} |t|^{-1}\Vert \sum ^M_{k=N} P_k u(t, \cdot )\Vert _{L^2(S^{1})} \le C \int _{-\infty }^{\infty }\frac{(|s-t|^{-\alpha _2}+1)\Vert L^-_\tau u(s, \cdot ) \Vert _{L^p(S^{1})}}{1+\sqrt{\tau }|s-t|}. \end{aligned}$$
(A.13)

For the case \(k\le N-1\), solving the first order differential Eq. (A.5) gives that

$$\begin{aligned} P_k u(t, \omega )=\int _{-\infty }^{\infty } H(t-s)S_k(s, t) P_k L^-_\tau u\left( s, \omega \right) \, ds . \end{aligned}$$
(A.14)

The estimate (A.7) shows that for any st

$$\begin{aligned} H(t-s) S_k(s, t)\le e^{-|N- 1 - k ||s-t|-\frac{\tau }{s^2}(t-s)^2}. \end{aligned}$$
(A.15)

Using (A.15) and performing the calculation as before, we conclude that

$$\begin{aligned} \Vert \sum _{k=0}^{N-1} P_k u(t, \cdot )\Vert _{L^2(S^{1})} \le C \int _{-\infty }^{\infty } \frac{|s|(|s-t|^{-\alpha _2}+1)\Vert L^-_\tau u(s, \cdot ) \Vert _{L^p(S^{1})}}{1+\sqrt{\tau }|s-t|}. \end{aligned}$$
(A.16)

Since st are in \((-\infty , \ t_0)\) with \(|t_0|\) large enough, the combination of estimates (A.13) and (A.16) gives

$$\begin{aligned} |t|^{-1}\Vert P_\tau ^- u(t, \cdot )\Vert _{L^2(S^{1})} \le C \int _{-\infty }^{\infty } \frac{|s|(|s-t|^{-\alpha _2}+1)\Vert L^-_\tau u(s, \cdot ) \Vert _{L^p(S^{1})}}{1+\sqrt{\tau }|s-t|}. \end{aligned}$$

Applying Young’s inequality for convolution, we obtain

$$\begin{aligned} \Vert t^{-1} P_\tau ^- u (t, \cdot ) \Vert _{L^2(dtd\omega )} \le C \left[ \int _{-\infty }^{\infty } \left( \frac{ |z|^{-\alpha _2}+1}{1+\sqrt{\tau }|z|} \right) ^\sigma \, dz\right] ^{\frac{1}{\sigma }} \Vert tL^-_\tau u \Vert _{L^p(dtd\omega )}, \end{aligned}$$

where \(\frac{1}{\sigma }=\frac{3}{2}-\frac{1}{p}\). Therefore,

$$\begin{aligned} \Vert t^{-1} P_\tau ^- u (t, \cdot ) \Vert _{L^2(dtd\omega )}\le C\tau ^{-\frac{1}{2\sigma }+\frac{\alpha _2}{2}} \Vert t L^-_\tau u \Vert _{L^p(dtd\omega )}, \end{aligned}$$

where we have used the fact

$$\begin{aligned} \left[ \int _{-\infty }^{\infty } \left( \frac{ |z|^{-\alpha _2}+1}{1+\sqrt{\tau }|z|} \right) ^\sigma \, dz\right] ^{\frac{1}{\sigma }} \le C\tau ^{-\frac{1}{2\sigma }+\frac{\alpha _2}{2}} \end{aligned}$$

with \(\alpha _2 \in \left( 0, \frac{1}{2} \right) \) and \(\sigma \in \left( 1, 2 \right) \). This completes (A.4) since \(-\frac{1}{2\sigma }+\frac{\alpha _2}{2}=\frac{1-p}{p}\). Finally, the proof is complete. \(\square \)

We state and prove a Caccioppoli inequality for the second order elliptic Eq. (5) with singular lower order terms. Because our lower order terms are assumed to be singular, we must employ a Sobolev embedding in \(\mathbb {R}^2\), and this forces the right hand side to be relatively larger than it was in Lemma 5 from [6], the corresponding result for \(n \ge 3\).

Lemma 7

Assume that for some \(s \in \left( 2, \infty \right] \) and \(t \in \left( 1, \infty \right] \), \(\left| \left| W\right| \right| _{L^s\left( B_{R} \right) } \le K\) and \(\left| \left| V\right| \right| _{L^t\left( B_{R} \right) } \le M\). Let u be a solution to Eq. (5) in \(B_R\). Then for any \(\delta > 0\), there exists a constant C, depending only on s, t and \(\delta \), such that for any \(r<R\),

$$\begin{aligned} \Vert \nabla u\Vert ^2_{L^2(B_r)}\le C\left[ \frac{1}{(R-r)^2}+M^{\frac{t}{t-1}+ \delta } +K^{\frac{2s}{s-2} + \delta }\right] \Vert u\Vert ^2_{L^2(B_R)}. \end{aligned}$$

Proof

We start by decomposing V and W into bounded and unbounded parts. For some \(M_0, K_0\) to be determined, let

$$\begin{aligned} V(x)=\overline{V}_{M_0}+V_{M_0}, \quad W(x)=\overline{W}_{K_0}+W_{K_0}, \end{aligned}$$

where

$$\begin{aligned} {\overline{V}}_{M_0}=V(x)\chi _{\left\{ |V(x)|\le \sqrt{M_0}\right\} }, \quad {V}_{M_0}=V(x)\chi _{\left\{ |V(x)|>\sqrt{M_0}\right\} }, \end{aligned}$$

and

$$\begin{aligned} {\overline{W}}_{K_0}=W(x)\chi _{\left\{ |W(x)|\le \sqrt{K_0}\right\} }, \quad {W}_{K_0}=W(x)\chi _{\left\{ |W(x)|>\sqrt{K_0}\right\} }. \end{aligned}$$

For any \(q \in \left[ 1, t\right] \),

$$\begin{aligned} \Vert V_{M_0}\Vert _{L^q}\le M_0^{-\frac{t-q}{2q}}\Vert V_{M_0}\Vert _{L^{t}}^{\frac{t}{q}}\le M_0^{-\frac{t-q}{2q}}\Vert V\Vert _{L^{t}}^{\frac{t}{q}} \le M_0^{-\frac{t-q}{2q}}M^{\frac{t}{q}}. \end{aligned}$$
(A.17)

Similarly, for any \(q \in \left[ 1, s\right] \), we have

$$\begin{aligned} \Vert W_{K_0}\Vert _{L^q}\le K_0^{-\frac{s-q}{2q}}\Vert W_{K_0}\Vert _{L^{s}}^{\frac{s}{q}}\le K_0^{-\frac{s-q}{2q}}\Vert W\Vert _{L^{s}}^{\frac{s}{q}} \le K_0^{-\frac{s-q}{2q}}K^{\frac{s}{q}}. \end{aligned}$$
(A.18)

Let \(B_R\subset B_1\). Choose a smooth cut-off function \(\eta \in C^\infty _0\left( B_R \right) \) such that \(\eta (x) \equiv 1\) in \(B_r\) and \(|\nabla \eta |\le \frac{C}{|R-r|}\). Multiplying both sides of Eq. (5) by \(\eta ^2 u\) and integrating by parts, we obtain

$$\begin{aligned} \int |\nabla u|^2 \eta ^2 = \int V\eta ^2 u^2 +\int W\cdot \nabla u \, \eta ^2 u - 2\int \nabla u\cdot \nabla \eta \, \eta \, u. \end{aligned}$$
(A.19)

We estimate the terms on the right side of (A.19). For the first term, we see that

$$\begin{aligned} \int V \eta ^2 u^2 \le \int |{\overline{V}_{M_0}}|\eta ^2 u^2 + \int |{{V}_{M_0}}|\eta ^2 u^2. \end{aligned}$$

It is clear that

$$\begin{aligned} \int |{\overline{V}_{M_0}}|\eta ^2 u^2\le M_0^{\frac{1}{2}}\int \eta ^2 u^2. \end{aligned}$$
(A.20)

Fix \(\delta > 0\). Let \(\delta _0 = \delta \frac{\left( t-1 \right) ^2}{t+\delta \left( t-1 \right) }\). By Hölder’s inequality, (A.17) with \(q = 1 + \delta _0\), and Sobolev embedding with \(2q^\prime := 2\left( 1 + \delta _0^{-1} \right) > 2\), we get

$$\begin{aligned} \left| \int {V}_{M_0}\eta ^2 u^2 \right|&\le \left( \int |{{V}_{M_0}}|^{q} \right) ^{\frac{1}{q}} \left( \int \left| \eta ^2u^2\right| ^{q^\prime } \right) ^{\frac{1}{q^\prime }} \nonumber \\&\le C_{\delta _0} {M_0}^{-\frac{t-q}{2q}}M^{\frac{t}{q}} \int |\nabla (\eta u)|^2. \end{aligned}$$
(A.21)

Taking \(C_{\delta _0} {M_0}^{-\frac{t-q}{2q}}M^{\frac{t}{q}}=\frac{1}{16}\), i.e \(M_0 = C_{\delta _0, t} M^{\frac{2t}{t-q}}\), from (A.20) and (A.21), we get

$$\begin{aligned} \int V \eta ^2 u^2\le & {} C M^{\frac{t}{t-q}}\int |\eta u|^2+\frac{1}{16}\int |\nabla (\eta u)|^2 \nonumber \\\le & {} C M^{\frac{t}{t-1} + \delta }\int |\eta u|^2+\frac{1}{8}\int |\nabla \eta |^2 u^2 +\frac{1}{8}\int |\nabla u|^2 \eta ^2. \end{aligned}$$
(A.22)

Now we estimate the second term in the righthand side of (A.19). We have that

$$\begin{aligned} \int W \cdot \nabla u \eta ^2 u = \int |{\overline{W}_{K_0}}| |\nabla u| \eta ^2 u + \int |{W}_{K_0}| | \nabla u| \eta ^2 u. \end{aligned}$$
(A.23)

By Young’s inequality for products,

$$\begin{aligned} \int |{\overline{W}_{K_0}}| |\nabla u| \eta ^2 u \le \frac{1}{8} \int |\nabla u|^2\eta ^2 +CK_0 \int \eta ^2 u^2. \end{aligned}$$
(A.24)

This time, set \(\delta _0 =\delta \frac{\left( s-2 \right) ^2}{2s+\delta \left( s-2 \right) }\). By Hölder’s inequality, (A.17) with \(q = 2 + \delta _0\), and Sobolev embedding with \(q^\prime = 2\left( 1 + 2 \delta _0^{-1} \right) > 2\), we get

$$\begin{aligned} \int {W}_{K_0} \cdot \nabla u \eta ^2 u&\le \left( \int |{{W}_{K_0}}|^{{q}} \right) ^{\frac{1}{q}} \left( \int |\nabla u\cdot \eta |^{2} \right) ^{\frac{1}{2}} \left( \int |u \eta |^{q^{\prime }} \right) ^{\frac{1}{q^\prime }} \nonumber \\&\le C_{\delta _0} K_0^{-\frac{s-q}{2q}}K^{\frac{s}{q}}\Vert |\nabla u|\eta \Vert _{L^2} \Vert \nabla (\eta u)\Vert _{L^2} \nonumber \\&\le C_{\delta _0} K_0^{-\frac{s-q}{2q}}K^{\frac{s}{q}}\Vert |\nabla u|\eta \Vert _{L^2}\left( \Vert |\nabla \eta | u \Vert _{L^2} + \Vert |\nabla u|\eta \Vert _{L^2} \right) \nonumber \\&\le 2 C_{\delta _0} K_0^{-\frac{s-q}{2q}}K^{\frac{s}{2}}\Vert |\nabla u|\eta |\Vert ^2_{L^2} + \frac{1}{2} C_{\delta _0} K_0^{-\frac{s-q}{2q}}K^{\frac{s}{2}} \Vert |\nabla \eta | u \Vert _{L^2}^2. \end{aligned}$$
(A.25)

We choose \(C_{\delta _0} K_0^{-\frac{s-q}{2q}}K^{\frac{s}{q}}=\frac{1}{16}\), that is, \(K_0=C_{\delta _0, s} K^{\frac{2s}{s-q}}\). The combination of (A.23), (A.24) and (A.25) gives that

$$\begin{aligned} \int W \cdot \nabla u \, \eta ^2 u\le & {} \frac{1}{4} \Vert |\nabla u| \eta \Vert ^2_{L^2}+CK^{\frac{2s}{s-2} + \delta }\Vert u\eta \Vert ^2_{L^2} +\frac{1}{32}\Vert |\nabla \eta | u\Vert ^2_{L^2} . \end{aligned}$$
(A.26)

Finally, Young’s inequality for products implies that

$$\begin{aligned} 2\int \nabla u\cdot \nabla \eta \, \eta \, u \le \frac{1}{8} \Vert |\nabla u| \eta \Vert ^2_{L^2} + 8 \Vert |\nabla \eta | u \Vert ^2_{L^2} \end{aligned}$$

Together with (A.19), (A.22) and (A.26), we obtain

$$\begin{aligned} \int |\nabla u|^2 \eta ^2 \le C \left( M^{\frac{t}{t-1} + \delta } +K^{\frac{2s}{s-2} + \delta } \right) \int |u\eta |^2\,dx+ C \int |\nabla \eta |^2u^2\,dx. \end{aligned}$$

From the assumptions on \(\eta \), this completes the proof in the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davey, B., Zhu, J. Quantitative uniqueness of solutions to second order elliptic equations with singular potentials in two dimensions. Calc. Var. 57, 92 (2018). https://doi.org/10.1007/s00526-018-1345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1345-7

Mathematics Subject Classification

Navigation