Skip to main content
Log in

Sharp regularity estimates for quasi-linear elliptic dead core problems and applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this manuscript we study geometric regularity estimates for quasi-linear elliptic equations of p-Laplace type (\(1< p< \infty \)) with strong absorption condition:

$$\begin{aligned} -\mathrm {div}(\Phi (x, u, \nabla u)) + \lambda _0(x) u_{+}^q(x) = 0 \quad \hbox {in} \quad \Omega \subset \mathbb {R}^N, \end{aligned}$$

where \(\Phi : \Omega \times \mathbb {R}_{+} \times \mathbb {R}^N \rightarrow \mathbb {R}^N\) is a vector field with an appropriate p-structure, \(\lambda _0\) is a non-negative and bounded function and \(0\le q<p-1\). Such a model permits existence of solutions with dead core zones, i.e, a priori unknown regions where non-negative solutions vanish identically. We establish sharp and improved \(C^{\gamma }\) regularity estimates along free boundary points, namely \(\mathfrak {F}_0(u, \Omega ) = \partial \{u>0\} \cap \Omega \), where the regularity exponent is given explicitly by \(\gamma = \frac{p}{p-1-q} \gg 1\). Some weak geometric and measure theoretical properties as non-degeneracy, uniform positive density and porosity of free boundary are proved. As an application, a Liouville-type result for entire solutions is established provided that their growth at infinity can be controlled in an appropriate manner. Finally, we obtain finiteness of \((N-1)\)-Hausdorff measure of free boundary for a particular class of dead core problems. The approach employed in this article is novel even to dead core problems governed by the p-Laplace operator \(-\Delta _p u + \lambda _0 u^q\chi _{\{u>0\}} = 0\) for any \(\lambda _0>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We said that f satisfies a Lipschitz condition of order \(p-1\) at 0 if there exist constants \(\mathfrak {M}, \delta >0\) such that \(f(u)\le \mathfrak {M}u^{p-1}\) for \(0<u<\delta \).

  2. Throughout this manuscript, we will refer to universal constants when they depend only on dimension and structural properties of the problem, i.e. on \(N, p, q, c_1, c_2, c_3, c_4\) and the bounds of \(\lambda _0\)

References

  1. Alt, H.W., Phillips, D.: A free boundary problem for semilinear elliptic equations. J. Reine Angew. Math. 368, 63–107 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Andersson, J.: Almost everywhere regularity for the free boundary of the normalized \(p\)-harmonic Obstacle problem \(p>2\). arXiv:1611.04397

  3. Aris, R.: The mathematical theory of diffusion and reaction in permeable catalysts. In: Vol. I: The Theory of the Steady State. Clarendon Press, Oxford; Oxford University Press, London. XVI, p. 444 (1975)

  4. Aris, R.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. In: Vol. II: Questions of Uniqueness, Stability, and Transient Behaviour. Clarendon Press, Oxford; Oxford University Press, London. XVI, p. 217 (1975)

  5. Bandle, C., Sperb, R.P., Stakgold, I.: Diffusion and reaction with monotone kinetics. Nonlinear Anal. 8, 321–333 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandle, C., Vernier-Piro, S.: Estimates for solutions of quasilinear problems with dead cores. Z. Angew. Math. Phys. 54, 815–821 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choe, H.J.: A regularity theory for a more general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Rational Mech. Anal. 114, 383–394 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. da Silva, J.V., Leitão, R.A., Ricarte, G.C.: Fully nonlinear elliptic equations of degenerate/singular type with free boundaries (preprint)

  9. da Silva J.V., Ochoa, P.: Fully nonlinear parabolic dead core problems (preprint)

  10. da Silva, J.V., Ochoa, P., Silva, A.: Regularity for degenerate evolution equations with strong absorption. J. Differ. Equ. 264(12), 7270–7293 (2018). https://doi.org/10.1016/j.jde.2018.02.013

    Article  MathSciNet  MATH  Google Scholar 

  11. da Silva, J.V., Rossi, J., Salort, A.: Regularity properties for \(p\)-dead core problems and their assymptotic limit as \(p\rightarrow \infty \) (preprint)

  12. Díaz, J.I.: Soluciones con soporte compacto para ciertos problemas semilineales. Collect. Math. 30(2), 141–179 (1979)

    MathSciNet  Google Scholar 

  13. Díaz, J.I.: Nonlinear partial differential equations and free boundaries. In: Vol. 1: Elliptic Equations, Pitman Research Notes in Mathematics, 106. London (1985)

  14. Díaz, J.I., Hernández, J.: On the existence of a free boundary for a class of reaction-diffusion systems. SIAM J. Math. Anal. 15(4), 670–685 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Díaz, J.I., Herrero, M.A.: Estimates on the support of the solutions of some non linear elliptic and parabolic problems. Proc. R. Soc. Edimburg 98A, 249–258 (1981)

    Article  MATH  Google Scholar 

  16. Díaz, J.I., Véeron, L.: Local vanishing properties of solutions of elliptic and parabolic quasilinear equations. Trans. Am. Math. Soc. 290(2), 787–814 (1985)

    Article  MathSciNet  Google Scholar 

  17. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. TMA 7, 827–850 (1983)

    Article  MATH  Google Scholar 

  18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  19. Friedman, A., Phillips, D.: The free boundary of a semilinear elliptic equation. Trans. Am. Math. Soc. 282(1), 153–182 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hastings, S.P., McLeod, J.B.: The number of solutions to an equation from catalysis. Proc. R. Soc. Edinb. 101A, 15–30 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karp, L., Kilpeläinen, T., Petrosyan, A., Shahgholian, H.: On the porosity of free boundaries in degenerate variational inequalities. J. Differ. Equ. 164(1), 110–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koskela, P., Rohde, S.: Hausdorff dimension and mean porosity. Math. Ann. 309(4), 593–609 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  24. Lee, K.-A., Shahgholian, H.: Hausdorff measure and stability for the \(p\)-obstacle problem \((2<p<\infty )\). J. Differ. Equ. 195, 14–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leitão, R.A., Teixeira, E.: Regularity and geometric estimates for minima of discontinuous functionals. Rev. Mat. Iberoam. 31(1), 69–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Manfredi, J.: Regularity for minima of functionals with \(p\)-growth. J. Differ. Equ. 76, 203–212 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Phillips, D.: Hausdoff measure estimates of a free boundary for a minimum problem. Commun. Partial Differ. Equ. 8, 1409–1454 (1983)

    Article  MATH  Google Scholar 

  28. Pucci, P., Serrin, J.: The strong maximum principle revisited. J. Differ. Equ. 196, 1–66 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pucci, P., Serrin, J.: Dead cores and bursts for quasilinear singular elliptic equations. SIAM J. Math. Anal. 38, 259–278 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Serrin, J.: A Harnack inequality for nonlinear equations. Bull. Am. Math. Soc. 69, 481–486 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  31. Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  32. Teixeira, E.: Geometric regularity estimates for elliptic equations. Proc. MCA Contemp. Math. 656, 185–204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Teixeira, E.: Regularity for the fully nonlinear dead-core problem. Math. Ann. 364(3–4), 1121–1134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina) PIP 11220150100036CO. J. V. da Silva and A. Salort are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Vítor da Silva.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.V., Salort, A.M. Sharp regularity estimates for quasi-linear elliptic dead core problems and applications. Calc. Var. 57, 83 (2018). https://doi.org/10.1007/s00526-018-1344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1344-8

Mathematics Subject Classification

Navigation