Bakry–Émery curvature and diameter bounds on graphs

  • Shiping Liu
  • Florentin MünchEmail author
  • Norbert Peyerimhoff


We prove finiteness and diameter bounds for graphs having a positive Ricci-curvature bound in the Bakry–Émery sense. Our first result using only curvature and maximal vertex degree is sharp in the case of hypercubes. The second result depends on an additional dimension bound, but is independent of the vertex degree. In particular, the second result is the first Bonnet–Myers type theorem for unbounded graph Laplacians. Moreover, our results improve diameter bounds from Fathi and Shu (Bernoulli 24(1):672–698, 2018) and Horn et al. (J für die reine und angewandte Mathematik (Crelle’s J), 2017, and solve a conjecture from Cushing et al. (Bakry–Émery curvature functions of graphs, 2016).

Mathematics Subject Classification

53C21 05C81 35K05 



We gratefully acknowledge partial support by the EPSRC Grant EP/K016687/1. FM wants to thank the German Research Foundation (DFG) for financial support.


  1. 1.
    Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84. In: Azéma, J., Yor, M. (eds.) Lecture Notes in Mathematics 1123, pp. 177–206. Springer, Berlin (1985)Google Scholar
  2. 2.
    Bakry, D., Ledoux, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85(1), 253–270 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Li–Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, S.Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143(3), 289–297 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cushing, D., Liu, S., Peyerimhoff, N.: Bakry–Émery curvature functions of graphs (2016). arXiv:1606.01496
  6. 6.
    DeVos, M., Mohar, B.: An analogue of the Descartes–Euler formula for infinite graphs and Higuchi’s conjecture. Trans. Am. Math. Soc. 359(7), 3287–3300 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fathi, M., Shu, Y.: Curvature and transport inequalities for Markov chains in discrete spaces. Bernoulli 24(1), 672–698 (2018). arXiv:1509.07160 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete Comput. Geom. 29(3), 323–374 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gong, C., Lin, Y.: Properties for CD Inequalities with unbounded Laplacians. Chin. Ann. Math. Ser. B 38(5), 1059–1070 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Higuchi, Y.: Combinatorial curvature for planar graphs. J. Graph Theory 38(4), 220–229 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Horn, P., Lin, Y., Liu, S., Yau, S.-T.: Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs. J für die reine und angewandte Mathematik (Crelle’s J) (2017).
  12. 12.
    Hua, B., Lin, Y.: Stochastic completeness for graphs with curvature dimension conditions. Adv. Math. 306, 279–302 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Klartag, B., Kozma, G., Ralli, P., Tetali, P.: Discrete curvature and Abelian groups. Can. J. Math. 68(3), 655–674 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Keller, M., Peyerimhoff, N., Pogorzelski, F.: Sectional curvature of polygonal complexes with planar substructures. Adv. Math. 307, 1070–1107 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lin, Y., Liu, S.: Equivalent Properties of CD Inequality on graph (2015). arXiv:1512.02677
  16. 16.
    Lin, Y., Yau, S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Münch, F.: Li–Yau inequality on finite graphs via non-linear curvature dimension conditions (2015). arXiv:1501.05839
  18. 18.
    Münch, F.: Remarks on curvature dimension conditions on graphs. Calc. Var. Partial Differ. Equ. 56(1), 11 (2017). arXiv:1501.05839 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schmuckenschläger, M.: Curvature of nonlocal Markov generators, Convex Geometric Analysis (Berkeley, CA, 1996), volume 34 of Mathematical Sciences Research Institute Publications, pp. 189–197. Cambridge University Press, Cambridge (1999)Google Scholar
  22. 22.
    Stone, D.A.: A combinatorial analogue of a theorem of Myers, Illinois J. Math. 20 (1), 12–21, (1976) and Erratum. Ill. J. Math. 20(3), 551–554 (1976)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shiping Liu
    • 1
  • Florentin Münch
    • 2
    Email author
  • Norbert Peyerimhoff
    • 3
  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Institut für MathematikUniversität PotsdamPotsdamGermany
  3. 3.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations