Alfro, M., Giletti, T.: Varying the direction of propagation in reaction–diffusion equations in periodic media. Netw. Heterog. Media 11, 369–393 (2016)
MathSciNet
Article
MATH
Google Scholar
Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)
MathSciNet
Article
MATH
Google Scholar
Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)
MathSciNet
Article
MATH
Google Scholar
Berestycki, H., Hamel, F.: Generalized traveling waves for reaction–diffusion equations. In: Perspectives in Nonlinear Partial Differential Equations. In honor of H. Brezis, Amer. Math. Soc, Contemp. Math., vol. 446, pp. 101–123 (2007)
Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65, 592–648 (2012)
MathSciNet
Article
MATH
Google Scholar
Berestycki, H., Hamel, F., Matano, H.: Bistable travelling waves around an obstacle. Commun. Pure Appl. Math. 62, 729–788 (2009)
Article
MATH
Google Scholar
Chen, X., Guo, J.-S., Hamel, F., Ninomiya, H., Roquejoffre, J.-M.: Traveling waves with paraboloid like interfaces for balanced bistable dynamics. Ann. Inst. H. Poincaré Nonlinear Anal. 24, 369–393 (2007)
MathSciNet
Article
MATH
Google Scholar
Ding, W., Hamel, F., Zhao, X.: Bistable pulsating fronts for reaction–diffusion equations in a periodic habitat. Indiana Univ. Math. J. 66, 1189–1265 (2017)
Ding, W., Hamel, F., Zhao, X.: Transition fronts for periodic bistable reaction–diffusion equations. Calc. Var. Part. Differ. Equ. 54, 2517–2551 (2015)
MathSciNet
Article
MATH
Google Scholar
Ducasse, R., Rossi, L.: Blocking and invasion for reaction–diffusion equations in periodic media, preprint (https://arxiv.org/abs/1711.07389)
Ducrot, A.: A multi-dimensional bistable nonlinear diffusion equation in a periodic medium. Math. Ann. 366, 783–818 (2016)
MathSciNet
Article
MATH
Google Scholar
Ducrot, A., Giletti, T., Matano, H.: Existence and convergence to a propagating terrace in one-dimensional reaction–diffusion equations. Trans. Am. Math. Soc. 366, 5541–5566 (2014)
MathSciNet
Article
MATH
Google Scholar
El Smaily, M., Hamel, F., Huang, R.: Two-dimensional curved fronts in a periodic shear flow. Nonlinear Anal. 74, 6469–6486 (2011)
MathSciNet
Article
MATH
Google Scholar
Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Europe Math. Soc. 17, 2243–2288 (2015)
MathSciNet
Article
MATH
Google Scholar
Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)
MathSciNet
Article
MATH
Google Scholar
Hamel, F.: Bistable transition fronts in \(\mathbb{R}^N\). Adv. Math. 289, 279–344 (2016)
MathSciNet
Article
MATH
Google Scholar
Hamel, F., Monneau, R.: Solutions of semilinear elliptic equations in \(\mathbb{R}^N\) with conical-shaped level sets. Commun. Partial Differ. Equ. 25, 769–819 (2000)
Article
MATH
Google Scholar
Hamel, F., Monneau, R., Roquejoffre, J.-M.: Existence and qualitative properties of multidimensional conical bistable fronts. Disc. Cont. Dyn. Syst. A 13, 1069–1096 (2005)
MathSciNet
Article
MATH
Google Scholar
Hamel, F., Monneau, R., Roquejoffre, J.-M.: Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Disc. Cont. Dyn. Syst. A 14, 75–92 (2006)
MathSciNet
MATH
Google Scholar
Hamel, F., Rossi, L.: Admissible speeds of transition fronts for non-autonomous monostable equations. SIAM J. Math. Anal. 47, 3342–3392 (2015)
MathSciNet
Article
MATH
Google Scholar
Hamel, F., Rossi, L.: Transition fronts for the Fisher–KPP equation. Trans. Am. Math. Soc. 368, 8675–8713 (2016)
MathSciNet
Article
MATH
Google Scholar
Mellet, A., Nolen, J., Roquejoffre, J.-M., Ryzhik, L.: Stability of generalized transition fronts. Commun. Partial Differ. Equ. 34, 521–552 (2009)
MathSciNet
Article
MATH
Google Scholar
Mellet, A., Roquejoffre, J.-M., Sire, Y.: Generalized fronts for one-dimensional reaction–diffusion equations. Disc. Cont. Dyn. Syst. A 26, 303–312 (2010)
MathSciNet
MATH
Google Scholar
Nadin, G.: Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations. Ann. Inst. H. Poincaré Nonlinear Anal. 32, 841–873 (2015)
MathSciNet
Article
MATH
Google Scholar
Nadin, G., Rossi, L.: Propagation phenomena for time heterogeneous KPP reaction–diffusion equations. J. Math. Pures Appl. 98, 633–653 (2012)
MathSciNet
Article
MATH
Google Scholar
Nadin, G., Rossi, L.: Transition waves for Fisher–KPP equations with general time-heterogeneous and space-periodic coefficients. Anal. PDE 8, 1351–1377 (2015)
MathSciNet
Article
MATH
Google Scholar
Ninomiya, H., Taniguchi, M.: Existence and global stability of traveling curved fronts in the Allen–Cahn equations. J. Differ. Equ. 213, 204–233 (2005)
MathSciNet
Article
MATH
Google Scholar
Ninomiya, H., Taniguchi, M.: Global stability of traveling curved fronts in the Allen–Cahn equations. Disc. Cont. Dyn. Syst. A 15, 819–832 (2006)
MathSciNet
Article
MATH
Google Scholar
Nolen, J., Roquejoffre, J.-M., Ryzhik, L., Zlatoš, A.: Existence and non-existence of Fisher–KPP transition fronts. Arch. Ration. Mech. Anal. 203, 217–246 (2012)
MathSciNet
Article
MATH
Google Scholar
Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Nonlinéaire 26, 1021–1047 (2009)
MathSciNet
Article
MATH
Google Scholar
Roquejoffre, J.-M., Roussier-Michon, V.: Nontrivial large-time behavior in bistable reaction–diffusion equations. Ann. Mat. Pura Appl. 188, 207–233 (2009)
MathSciNet
Article
MATH
Google Scholar
Shen, W.: Traveling waves in diffusive random media. J. Dyn. Differ. Equ. 16, 1011–1060 (2004)
MathSciNet
Article
MATH
Google Scholar
Shen, W.: Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations. J. Dyn. Differ. Equ. 23, 1–44 (2011)
MathSciNet
Article
MATH
Google Scholar
Shen, W., Shen, Z.: Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type. Trans. Am. Math. Soc. 369, 2573–2613 (2017)
MathSciNet
Article
MATH
Google Scholar
Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30, 143–160 (1986)
MathSciNet
Article
MATH
Google Scholar
Taniguchi, M.: Traveling fronts of pyramidal shapes in the Allen–Cahn equation. SIAM J. Math. Anal. 39, 319–344 (2007)
MathSciNet
Article
MATH
Google Scholar
Taniguchi, M.: The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations. J. Differ. Equ. 246, 2103–2130 (2009)
MathSciNet
Article
MATH
Google Scholar
Taniguchi, M.: Multi-dimensional traveling fronts in bistable reaction–diffusion equations. Disc. Cont. Dyn. Syst. A 32, 1011–1046 (2012)
MathSciNet
Article
MATH
Google Scholar
Xin, X.: Existence and uniqueness of travelling waves in a reaction–diffusion equation with combustion nonlinearity. Indiana Univ. Math. J. 40, 985–1008 (1991)
MathSciNet
Article
Google Scholar
Xin, X.: Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Differ. Equ. 3, 541–573 (1991)
Article
MATH
Google Scholar
Xin, J.X.: Existence of planar flame fronts in convective–diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992)
MathSciNet
Article
MATH
Google Scholar
Xin, J.X.: Existence and nonexistence of traveling waves and reaction–diffusion front propagation in periodic media. J. Stat. Phys. 73, 893–926 (1993)
MathSciNet
Article
MATH
Google Scholar
Xin, J.X., Zhu, J.: Quenching and propagation of bistable reaction–diffusion fronts in multidimensional periodic media. Physica D 81, 94–110 (1995)
MathSciNet
Article
MATH
Google Scholar
Zlatoš, A.: Transition fronts in inhomogeneous Fisher–KPP reaction–diffusion equations. J. Math. Pures Appl. 98, 89–102 (2012)
MathSciNet
Article
MATH
Google Scholar
Zlatoš, A.: Generalized traveling waves in disordered media: existence, uniqueness, and stability. Arch. Ration. Mech. Anal. 208, 447–480 (2013)
MathSciNet
Article
MATH
Google Scholar
Zlatoš, A.: Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré Anal. Nonlinéaire 34, 1687–1705 (2017)