Skip to main content

Advertisement

Log in

Minimizers for the fractional Sobolev inequality on domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a version of the fractional Sobolev inequality in domains and study whether the best constant in this inequality is attained. For the half-space and a large class of bounded domains we show that a minimizer exists, which is in contrast to the classical Sobolev inequalities in domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Équations différentielles nonlinéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  3. Bellazzini, J., Frank, R.L., Visciglia, N.: Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems. Math. Ann. 360(3–4), 653–673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogdan, K., Dyda, B.: The best constant in a fractional Hardy inequality. Math. Nachr. 284(5–6), 629–638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Brézis, H., Mironescu, P.: Another Look at Sobolev Spaces, Optimal Control and Partial Differential Equations, pp. 439–455. IOS, Amsterdam (2001)

    MATH  Google Scholar 

  6. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brézis, H., Lieb, E.H.: Minimum action solutions of some vector field equations. Commun. Math. Phys. 96(1), 97–113 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42(3), 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlen, E.A., Loss, M.: Extremals of functionals with competing symmetries. J. Funct. Anal. 88(2), 437–456 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Z.-Q., Kim, P., Song, R.: Two-sided heat kernel estimates for censored stable-like processes. Probab. Theory Related Fields 146(3–4), 361–399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Valeriola, S., Willem, M.: On some quasilinear critical problems. Adv. Nonlinear Stud. 9(4), 825–836 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyda, B.: A fractional order Hardy inequality. Illinois J. Math. 48(2), 575–588 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Dyda, B., Frank, R.L.: Fractional Hardy–Sobolev–Mazya inequality for domains. Studia Math. 208(2), 151–166 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fanelli, L., Vega, L., Visciglia, N.: On the existence of maximizers for a family of restriction theorems. Bull. Lond. Math. Soc. 43(4), 811–817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frank, R.L.: Eigenvalue Bounds for the Fractional Laplacian: A Review. Preprint (2016), arXiv:1603.09736

  19. Frank, R.L., Geisinger, L.: Refined semiclassical asymptotics for fractional powers of the Laplace operator. J. Reine Angew. Math. 712, 1–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frank, R.L., Lieb, E.H.: Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality. Calc. Var. Partial Differ. Equ. 39(1–2), 85–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frank, R.L., Lieb, E.H.: Spherical reflection positivity and the Hardy–Littlewood–Sobolev inequality. In: Concentration, Functional Inequalities and Isoperimetry, C. Houdré et al. (eds.), Contemp. Math. 545, Am. Math. Soc., Providence, RI (2011)

  22. Frank, R.L., Lieb, E.H.: A new, rearrangement-free proof of the sharp Hardy–Littlewood–Sobolev inequality. In: Brown, B.M. et al. (eds.) Spectral Theory, Function Spaces and Inequalities, 55–67, Oper. Theory Adv. Appl. 219, Birkhäuser, Basel (2012)

  23. Frank, R.L., Lieb, E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47(6), 4436–4450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frank, R.L., Lieb, E.H., Sabin, J.: Maximizers for the Stein–Tomas inequality. Geom. Funct. Anal. 26(4), 1095–1134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Frank, R.L., Seiringer, R.: Sharp fractional Hardy inequalities in half-spaces. In: Around the research of Vladimir Maz’ya, A. Laptev (ed.), 161–167, International Mathematical Series 11 (2010)

  26. Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. I. The one-electron atom. Commun. Math. Phys. 104(2), 251–270 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gérard, P., Meyer, Y., Oru, F.: Inégalités de Sobolev précisées. Séminaire sur les Équations aux Dérivées Partielles 1996–1997, École Polytech., Palaiseau., Exp. no. IV, (1997)

  28. Li, D.: On Kato–Ponce and fractional Leibniz. Rev. Mat. Iberoam., to appear. Preprint (2016): arXiv:1609.01780

  29. Li, Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6, 153–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2) 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1(2), 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Musina, R., Nazarov, A.I.: Sobolev and Hardy–Sobolev inequalities for Neumann Laplacians on half spaces. Preprint (2017), arXiv:1708.01567

  33. Servadei, R., Valdinoci, E.: The Brézis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  MATH  Google Scholar 

  34. Tertikas, A., Tintarev, K.: On existence of minimizers for the Hardy–Sobolev–Mazya inequality. Ann. Mat. Pura Appl. (4) 186(4), 645–662 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was done when T. J. was visiting California Institute of Technology as an Orr foundation Caltech-HKUST Visiting Scholar during 2015-2016. He would like to thank Professor Thomas Y. Hou for hosting his visit. He also thanks Professors Zhen-Qing Chen and Dong Li for useful discussions. Partial support through National Science Foundation, grant DMS-1363432 (R.L.F.), Hong Kong RGC grant ECS 26300716 (T.J.) and NSFC 11501034, a key project of NSFC 11631002 and NSFC 11571019, (J.X.) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert L. Frank.

Additional information

Communicated by A. Malchiodi.

Appendix A. Some facts about the Sobolev spaces \(\mathring{H}^\sigma (\mathbb {R}^n)\)

Appendix A. Some facts about the Sobolev spaces \(\mathring{H}^\sigma (\mathbb {R}^n)\)

We begin with an improvement of the fractional Sobolev inequality due to Gérard, Meyer and Oru [27]. More general ones can be found in [28]. For the sake of completeness we include a simple proof following the lines of [2, Theorem 1.43]. We use the notation

$$\begin{aligned} \left( e^{t\Delta }u \right) (x):=\int _{\mathbb {R}^n} \frac{1}{(4\pi t)^{n/2}}e^{-|x-y|^2/4t}u(y)\,d y. \end{aligned}$$

Lemma A.1

Let \(0<\sigma <1/2\) if \(n=1\) and \(0<\sigma <1\) if \(n\ge 2\). Then there is a constant \(C_{n,\sigma }\) such that for all \(u\in \mathring{H}^\sigma (\mathbb {R}^n)\),

$$\begin{aligned} \Vert u\Vert _{L^\frac{2n}{n-2\sigma }(\mathbb {R}^n)}\le C_{n,\sigma } \left( \int _{\mathbb {R}^n}\int _{\mathbb {R}^n} \frac{(u(x)-u(y))^2}{|x-y|^{n+2\sigma }}\,d x\,d y\right) ^{\frac{n-2\sigma }{2n}} \left( \sup _{t>0}t^{\frac{n-2\sigma }{4}} \Vert e^{t\Delta }u\Vert _{L^\infty (\mathbb {R}^n)}\right) ^{\frac{2\sigma }{n}} \,. \end{aligned}$$

Proof

We abbreviate \(q=\frac{2n}{n-2\sigma }\) and \(\alpha =-\frac{n-2\sigma }{4}\) and assume, without loss of generality, that

$$\begin{aligned} \sup _{t>0}t^{-\alpha } \Vert e^{t\Delta }u\Vert _{L^\infty (\mathbb {R}^n)}=1. \end{aligned}$$

Note that

$$\begin{aligned} \int _{\mathbb {R}^n}|u|^q=q \int _{0}^\infty |\{|u|>\lambda \}|\lambda ^{q-1}\,d\lambda . \end{aligned}$$

We bound

$$\begin{aligned} |\{|u|>\lambda \}|\le |\{|e^{t\Delta }u|>\lambda /2\}|+ |\{|e^{t\Delta }u-u|>\lambda /2\}| \end{aligned}$$

and choose \(t=(\lambda /2)^{1/\alpha }\), so that the first term on the right hand side is zero. Thus, by Plancherel’s theorem

$$\begin{aligned} |\{|u|>\lambda \}|&\le |\{|e^{(\lambda /2)^{1/\alpha }\Delta }u-u|>\lambda /2\}|\\&\le (2/\lambda )^2\int _{\mathbb {R}^n }|e^{(\lambda /2)^{1/\alpha }\Delta }u-u|^2\,\,d x\\&= (2/\lambda )^2\int _{\mathbb {R}^n }(e^{-(\lambda /2)^{1/\alpha }|\xi |^2}-1)^2|\hat{u}(\xi )|^2\,\,d \xi \,. \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{\mathbb {R}^n}|u|^q&\le q \int _{\mathbb {R}^n}|\hat{u}(\xi )|^2\,\,d \xi \int _{0}^\infty (2/\lambda )^2(e^{-(\lambda /2)^{1/\alpha }|\xi |^2}-1)^2\lambda ^{q-1}\,d\lambda \\&= C\int _{\mathbb {R}^n}|\hat{u}(\xi )|^2|\xi |^{2\sigma }\,\,d \xi \end{aligned}$$

with

$$\begin{aligned} C = q \int _{0}^\infty (2/\lambda )^2(e^{-(\lambda /2)^{1/\alpha }}-1)^2\lambda ^{q-1}\,\,d\lambda = \alpha q 2^q \int _0^\infty (e^{-\mu } -1)^2 \mu ^{\alpha (q-2)-1}\,d\mu <\infty \,. \end{aligned}$$

Another application of Plancherel’s theorem concludes the proof of the inequality. \(\square \)

The following lemma shows that on domains of finite measure with sufficiently regular boundary there is no Sobolev inequality for \(\sigma <1/2\). The proof uses ideas from [15].

Lemma A.2

Let \(n\ge 1\), \(0<\sigma <1/2\) and let \(\Omega \subset \mathbb {R}^n\) be an open set of finite measure such that

$$\begin{aligned} \left| \left\{ x\in \Omega :\ {{\mathrm{dist}}}(x,\Omega ^c)<\delta \right\} \right| = o(\delta ^{2\sigma }) \qquad \text {as}\ \delta \rightarrow 0 \,. \end{aligned}$$

Then

$$\begin{aligned} \inf _{0\not \equiv u \in C^1_c(\Omega )} \frac{I_{n,\sigma ,\Omega }[u]}{\left( \int _{\Omega } |u|^\frac{2n}{n-2\sigma }\,\mathrm {d}x \right) ^\frac{n-2\sigma }{n}} = 0 \,. \end{aligned}$$

Note that, if \(\Omega \) is bounded Lipschitz, then \(\left| \left\{ x\in \Omega :\ {{\mathrm{dist}}}(x,\Omega ^c)<\delta \right\} \right| \lesssim \delta \) for \(\delta \) sufficiently small and therefore \(S_{n,\sigma }(\Omega )=0\) for \(\sigma <1/2\).

Proof

Let \(u_\delta \in C^1_c(\Omega )\) such that \(u_\delta (x)=1\) if \({{\mathrm{dist}}}(x,\Omega ^c)\ge \delta \), \(0\le u_\delta \le 1\) and \(|\nabla u_\delta |\lesssim \delta ^{-1}\). Then

$$\begin{aligned} I_{n,\sigma ,\Omega }[u_\delta ]&\le 2 \int _{\{x\in \Omega :\ {{\mathrm{dist}}}(x,\Omega ^c)<\delta \}} \int _\Omega \frac{(u_\delta (x)-u_\delta (y))^2}{|x-y|^{n+2\sigma }}\,\mathrm {d}y\,\mathrm {d}x\\&= 2\int _{\{x\in \Omega :\ {{\mathrm{dist}}}(x,\Omega ^c)<\delta \}} \left( I(x)+ II(x) \right) \,\mathrm {d}x \end{aligned}$$

where

$$\begin{aligned} I(x)&:= \int _{\{y\in \Omega :\ |x-y|<\delta \}} \frac{(u_\delta (x)-u_\delta (y))^2}{|x-y|^{n+2\sigma }}\,\mathrm {d}y \\&\lesssim \frac{1}{\delta ^2} \int _{\{y\in \Omega :\ |x-y|<\delta \}} \frac{\mathrm {d}y}{|x-y|^{n+2\sigma -2 }} \\&\lesssim \frac{1}{\delta ^{2\sigma }} \end{aligned}$$

and

$$\begin{aligned} II(x)&:= \int _{\{y\in \Omega :\ |x-y|\ge \delta \}} \frac{(u_\delta (x)-u_\delta (y))^2}{|x-y|^{n+2\sigma }}\,\mathrm {d}y \\&\le \int _{\{y\in \Omega :\ |x-y|<\delta \}} \frac{\mathrm {d}y}{|x-y|^{n+2\sigma }} \\&\lesssim \frac{1}{\delta ^{2\sigma }} \,. \end{aligned}$$

Thus,

$$\begin{aligned} I_{n,\sigma ,\Omega }[u_\delta ] \lesssim \delta ^{-2\sigma } \left| \left\{ x\in \Omega :\ {{\mathrm{dist}}}(x,\Omega ^c)<\delta \right\} \right| \rightarrow 0 \qquad \text {as}\ \delta \rightarrow 0 \,. \end{aligned}$$

Since \(\int _\Omega u_\delta ^\frac{2n}{n-2\sigma }\,\mathrm {d}x \rightarrow |\Omega |\), we obtain the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, R.L., Jin, T. & Xiong, J. Minimizers for the fractional Sobolev inequality on domains. Calc. Var. 57, 43 (2018). https://doi.org/10.1007/s00526-018-1304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1304-3

Mathematics Subject Classification

Navigation