Skip to main content
Log in

The Riesz transform and quantitative rectifiability for general Radon measures

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we show that if \(\mu \) is a Borel measure in \({{\mathbb {R}}}^{n+1}\) with growth of order n, such that the n-dimensional Riesz transform \({{\mathcal {R}}}_\mu \) is bounded in \(L^2(\mu )\), and \(B\subset {{\mathbb {R}}}^{n+1}\) is a ball with \(\mu (B)\approx r(B)^n\) such that:

  1. (a)

    there is some n-plane L passing through the center of B such that for some \(\delta >0\) small enough, it holds

    $$\begin{aligned}\int _B \frac{\mathrm{dist}(x,L)}{r(B)}\,d\mu (x)\le \delta \,\mu (B),\end{aligned}$$
  2. (b)

    for some constant \({\varepsilon }>0\) small enough,

    $$\begin{aligned}\int _{B} |{{\mathcal {R}}}_\mu 1(x) - m_{\mu ,B}({{\mathcal {R}}}_\mu 1)|^2\,d\mu (x) \le {\varepsilon }\,\mu (B),\end{aligned}$$

    where \(m_{\mu ,B}({{\mathcal {R}}}_\mu 1)\) stands for the mean of \({{\mathcal {R}}}_\mu 1\) on B with respect to \(\mu \),

then there exists a uniformly n-rectifiable set \(\Gamma \), with \(\mu (\Gamma \cap B)\gtrsim \mu (B)\), and such that \(\mu |_\Gamma \) is absolutely continuous with respect to \({{\mathcal {H}}}^n|_\Gamma \). This result is an essential tool to solve an old question on a two phase problem for harmonic measure in subsequent papers by Azzam, Mourgoglou, Tolsa, and Volberg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, keeping track of the dependencies, one can check that \(c_3\) depends only on n and \(C_0\), and not on \(C_1\). However, this is not necessary for the proof of the Key Lemma.

References

  1. Azzam, J., Mourgoglou, M., Tolsa, X.: Mutual absolute continuity of interior and exterior harmonic measure implies rectifiability. Commun. Pure. Appl. Math. LXX, 2121–2163 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzam, J., Mourgoglou, M., Tolsa, X., Volberg, A.: On a two-phase problem for harmonic measure in general domains. Preprint (2016). To appear in Amer. J. Math

  3. Bishop, C.J., Carleson, L., Garnett, J.B., Jones, P.W.: Harmonic measures supported on curves. Pac. J. Math. 138(2), 233–236 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bishop, C.J.: A characterization of Poissonian domains. Ark. Mat. 29(1), 1–24 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Bishop, C.J.: Some questions concerning harmonic measure. Partial differential equations with minimal smoothness and applications (Chicago, IL, 1990) IMA Vol. Math. Appl., vol. 42., pp. 89–97. Springer, New York (1992)

  6. David, G.: Wavelets and singular integrals on curves and surfaces. Lecture Notes in Math. vol. 1465. Springer, Berlin (1991)

  7. David, G.: Unrectifiable 1-sets have vanishing analytic capacity. Rev. Mat. Iberoam. 14(2), 369–479 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. David, G., Mattila, P.: Removable sets for Lipschitz harmonic functions in the plane. Rev. Mat. Iberoam. 16(1), 137–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. David, G., Semmes, S.: Singular integrals and rectifiable sets in \(R_n\): Beyond Lipschitz graphs, Astérisque No. 193 (1991)

  10. David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable sets, Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence (1993)

    Book  MATH  Google Scholar 

  11. Eiderman, V., Nazarov, F., Volberg, A.: The \(s\)-Riesz transform of an \(s\)-dimensional measure in \({\mathbb{R}}^2\) is unbounded for \(1<s<2\), to appear in J. Anal. Math

  12. Kenig, C.E., Preiss, D., Toro, T.: Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions. J. Am. Math. Soc. 22(3), 771–796 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Léger, J.C.: Menger curvature and rectifiability. Ann. Math. 149, 831–869 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Melnikov, M.S.: Analytic capacity: discrete approach and curvature of a measure. Sb. Math. 186(6), 827–846 (1995)

    Article  MathSciNet  Google Scholar 

  15. Melnikov, M.S., Verdera, J.: A geometric proof of the \(L^2\) boundedness of the Cauchy integral on Lipschitz graphs. Intern. Math. Res. Not. 7, 325–331 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nazarov, F., Tolsa, X., Volberg, A.: On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1. Acta Math. 213(2), 237–321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nazarov, F., Tolsa, X., Volberg, A.: The Riesz transform Lipschitz harmonic functions. Publ. Mat. 58, 517–532 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pajot, H.: Théorème de recouvrement par des ensembles Ahlfors–réguliers et capacité analytique. C. R. Acad. Sci. Paris Sér. I Math. 323(2), 133–135 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Tolsa, X.: Uniform rectifiability, Calderón–Zygmund operators with odd kernel, and quasiorthogonality. Proc. Lond. Math. Soc. 98(2), 393–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tolsa, X.: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory, Volume 307 of Progress in Mathematics. Birkhäuser Verlag, Basel (2014)

  21. Tolsa, X.: Rectifiable measures, square functions involving densities, and the Cauchy transform. Mem. Amer. Math. Soc. 245(1158), v+130 pp (2017)

  22. Verdera, J.: On the T(1)-theorem for the Cauchy integral. Ark. Mat. 38, 183–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Tolsa.

Additional information

Communicated by L. Ambrosio.

The authors were supported by the ERC Grant 320501 of the European Research Council (FP7/2007-2013), and also partially supported by 2014-SGR-75 (Catalonia), MTM2013-44304-P, MTM-2016-77635-P, MDM-2014-044 (MICINN, Spain), and by Marie Curie ITN MAnET (FP7-607647).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girela-Sarrión, D., Tolsa, X. The Riesz transform and quantitative rectifiability for general Radon measures. Calc. Var. 57, 16 (2018). https://doi.org/10.1007/s00526-017-1294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1294-6

Mathematics Subject Classification

Navigation