Skip to main content
Log in

Weighted Lorentz estimates for parabolic equations with non-standard growth on rough domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The main aim of this paper is to prove the Calderón–Zygmund estimates for a general nonlinear parabolic equation of p(xt)-Laplacian type in the weighted Lorentz spaces. Note that we only require some mild conditions on the nonlinearity of coefficients and the underlying domain. The result for these nonlinear parabolic equations is new even in the particular case when the growth p(xt) is a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136, 285–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Acerbi, E., Mingione, G., Seregin, G. A.: Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann. Inst. Henri Poincaré Anal. Non Linéaire 21(1), 25–60 (2004)

  6. Adimurthi, K., Phuc, N.C.: Global Lorentz and Lorentz–Morrey estimates below the natural exponent for quasilinear equations. Calc. Var. Partial Differ. Equ. 54(3), 3107–3139 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Antontsev, S., Shmarev, S.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515–545 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bagby, R., Kurtz, D. S.: \(L(logL)\) spaces and weights for the strong maximal function, J. Anal. Math. 44, 21–31 (1984/1985)

  9. Baroni, P.: Lorentz estimates for degenerate and singular evolutionary systems. J. Differ. Equ. 255, 2927–2951 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Baroni, P., Bögelein, V.: Calderón-Zygmund estimates for parabolic \(p(x, t)\)-Laplacian systems. Rev. Mat. Iberoam. 30, 1355–1386 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bögelein, V., Duzaar, F.: Higher integrability for parabolic systems with non-standard growth and degenerate diffusions. Publ. Mat. 55, 201–250 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bögelein, V., Duzaar, F.: Hölder estimates for parabolic \(p(x, t)\)-Laplacian systems. Math. Ann. 354, 907–938 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bögelein, V., Duzaar, F., Mingione, G.: The regularity of general parabolic systems with degenerate diffusion. Mem. Am. Math 221(1041), vi+143 (2013)

    MATH  MathSciNet  Google Scholar 

  14. Bui, T. A., Duong, X. T.: Global Lorentz estimates for nonlinear parabolic equations on nonsmooth domains. Calc. Var. Partial Differ. Eq. 56, 47. Published online 20 Mar 2017. https://doi.org/10.1007/s00526-017-1130-z

  15. Byun, S.-S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57(10), 1283–1310 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Byun, S.-S., Wang, L.: Parabolic equations in time dependent Reifenberg domains. Adv. Math. 212, 797–818 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Byun, S.-S., Ok, J., Ryu, S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290–4326 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Byun, S.-S., Ok, J., Ryu, S.: Global gradient estimates for elliptic equations of \(p(x)\)-Laplacian type with BMO nonlinearity. J. Reine Angew. 715, 1–38 (2016)

    MATH  MathSciNet  Google Scholar 

  19. Byun, S.-S., Ok, J.: Nonlinear parabolic equations with variable exponent growth in nonsmooth domains. SIAM J. Math. Anal. 48(5), 3148–3190 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  20. Byun, S.-S., Ryu, S.: Weighted Orlicz estimates for general nonlinear parabolic equations over nonsmooth domains. J. Funct. Anal. 272, 4103–4121 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser, Basel (2013)

  22. David, G., Toro, T.: A generalization of Reifenbergs theorem in \(\mathbb{R}^3\). Geom. Funct. Anal. 18(4), 1168–1235 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Duzaar, F., Mingione, G., Steffen, K.: Parabolic systems with polynomial growth and regularity. Mem. Am. Math. Soc. 214(1005), x+118 (2011)

    MATH  MathSciNet  Google Scholar 

  24. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993)

    Book  MATH  Google Scholar 

  25. Di Fazio, G.: \(L^p\) estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Unione Mat. Ital. VII. Ser. A 10, 409–420 (1996)

    MATH  MathSciNet  Google Scholar 

  26. Han, Q., Lin, F.: Elliptic Partial Differential Equation. Courant Institute of Mathematical Sciences/New York University, New York (1997)

    MATH  Google Scholar 

  27. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge Univ. Press, Cambridge (1952)

    MATH  Google Scholar 

  28. Kinnunen, J., Lewis, J.L.: Higher integrability for parabolic systems of \(p\)-Laplacian type. Duke Math. J. 102, 253–271 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kinnunen, J., Lewis, J.L.: Very weak solutions of parabolic systems of \(p\)-Laplacian type. Ark. Mat. 40(1), 105–132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Krylov, N.V.: Parabolic and elliptic equations with VMO coefficients. Commun. Partial Differ. Equ. 32(1–3), 453–475 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Henriques, E., Urbano, J.M.: Intrinsic scaling for PDE’s with an exponential nonlinearity. Indiana Univ. Math. J. 55, 1701–1722 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

    MATH  MathSciNet  Google Scholar 

  33. Ladyzhenskaja, O. A., Solonnikov, V. A., Uralceva, N. N.: Linear and quasilinear equations of parabolic type, translated from the Russian by S. Smith, Transl. Math. Monogr., vol. 23, Am. Math. Soc., Providence (1967)

  34. Mengesha, T., Phuc, N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203(1), 189–216 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mengesha, T., Phuc, N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250, 2485–2507 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Nguyen, Q.-H.: Global estimates for quasilinear parabolic equations on Reifenberg flat domains and its applications to Riccati type parabolic equations with distributional data. Calc. Var. Partial Differ. Equ. 54(4), 3927–3948 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  37. Parviainen, M.: Global higher integrability for parabolic quasiminimizers in nonsmooth domains. Calc. Var. Partial Differ. Equ. 31, 75–98 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rajagopal, K.R., Ružička, M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23, 401–407 (1996)

    Article  MATH  Google Scholar 

  39. Rajagopal, K.R., Ružička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13, 59–78 (2001)

    Article  MATH  Google Scholar 

  40. Reifenberg, E.: Solutions of the plateau problem for \(m\)-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math, vol. 1748. Springer, Berlin (2000)

  42. Toro, T.: Doubling and flatness: geometry of measures. Not. Am. Math. Soc. 44, 1087–1094 (1997)

    MATH  MathSciNet  Google Scholar 

  43. Zhang, C.: Global weighted estimates for the nonlinear parabolic equations with non-standard growth. Calc. Var. Partial Differ. Equ. 55(5), Art. 109 (2016)

  44. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory, (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

    MathSciNet  Google Scholar 

  45. Zhikov, V.V.: Solvability of the three-dimensional thermistor problem. Proc. Steklov Inst. Math. 261, 101–114 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first named author was supported by the research grant ARC DP140100649 from the Australian Research Council and Vietnam’s National Foundation for Science and Technology Development (NAFOSTED) under Project 101.02–2016.25. The second named author was supported by the research grant ARC DP140100649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Thinh Duong.

Additional information

Communicated by L. Caffarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, T.A., Duong, X.T. Weighted Lorentz estimates for parabolic equations with non-standard growth on rough domains. Calc. Var. 56, 177 (2017). https://doi.org/10.1007/s00526-017-1273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1273-y

Mathematics Subject Classification

Navigation