Skip to main content
Log in

First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Following Escobar (J Funct Anal 150(2):544–556, 1997) and Jammes (Ann l’Inst Fourier 65(3):1381–1385, 2015), we introduce two types of isoperimetric constants and give lower bound estimates for the first nontrivial eigenvalues of Dirichlet-to-Neumann operators on finite graphs with boundary respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bandle, C.: Isoperimetric Inequalities and Applications, Volume 7 of Monographs and Studies in Mathematics. Pitman Advanced Publishing Program, Boston (1980)

    Google Scholar 

  2. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Universitext. Springer, New York (2012)

  3. Calderón, A.P.: On an inverse boundary value problem. In: Meyer, W.H., Raupp, M.A. (eds.) Seminar on Numerical Analysis and its Applications to Continuum Physics: Rio de Janeiro, pp. 65–73. Sociedade Brasileira de Matematica, Rio de Janeiro (1980)

    Google Scholar 

  4. Chang, K.C.: Spectrum of the 1-Laplacian and Cheeger’s constant on graphs. J. Graph Theory 81(2), 167–207 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton University Press, Princeton (1970)

  6. Chung, F.R.K.: Spectral Graph Theory, Volume 92 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington; by the American Mathematical Society, Providence (1997)

  7. Chang, K.C., Shao, Sihong, Zhang, Dong: The 1-Laplacian Cheeger cut: theory and algorithms. J. Comput. Math. 33(5), 443–467 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. Escobar, J.: The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal. 150(2), 544–556 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grigor’yan, A.: Analysis on Graphs. Lecture Notes, University of Bielefeld (2009). https://www.math.uni-bielefeld.de/~grigor/aglect.pdf

  10. Jammes, P.: Une inégalité de Cheeger pour le spectre de Steklov. Ann. l’Inst. Fourier 65(3), 1381–1385 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kuznetsov, N., Kulczycki, T., Kwasnicki, M., Nazarov, A., Siudeja, B., Poborchi, S., Polterovich, I.: The legacy of Vladimir Andreevich Steklov. Not. Am. Math. Soc. 61(1), 9–23 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lawler, G.F.: Random Walk and the Heat Equation. Student Mathematical Library, vol. 55. American Mathematical Society, Providence (2010)

    Google Scholar 

  13. Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  14. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  15. Taylor, M.E.: Partial Differential Equations. II. Qualitative Studies of Linear Equations, Volume 116 of Applied Mathematical Sciences. Springer, New York (1996)

    Google Scholar 

  16. Uhlmann, G.: Inverse problems: seeing the unseen. Bull. Math. Sci. 4(2), 209–279 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for his/her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang.

Additional information

Communicated by J. Jost.

Bobo Hua is supported in part by NSFC, No. 11401106. Zuoqin Wang is supported in part by NSFC, Nos. 11571131 and 11526212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, B., Huang, Y. & Wang, Z. First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs. Calc. Var. 56, 178 (2017). https://doi.org/10.1007/s00526-017-1260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1260-3

Mathematics Subject Classification

Navigation