Skip to main content
Log in

Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear fractional Laplacian problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we consider the following nonhomogeneous semilinear fractional Laplacian problem

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s u+u=\lambda (f(x,u)+h(x)) \,\, \text {in}\,\, \mathbb {R}^N,\\ u\in H^s(\mathbb {R}^N), u>0\,\, \text {in}\,\, \mathbb {R}^N, \end{array}\right. } \end{aligned}$$

where \(\lambda >0\) and \(\lim _{|x|\rightarrow \infty }f(x,u)=\overline{f}(u)\) uniformly on any compact subset of \([0,\infty )\). We prove that under suitable conditions on f and h, there exists \(0<\lambda ^*<+\infty \) such that the problem has at least two positive solutions if \(\lambda \in (0,\lambda ^*)\), a unique positive solution if \(\lambda =\lambda ^*\), and no solution if \(\lambda >\lambda ^*\). We also obtain the bifurcation of positive solutions for the problem at \((\lambda ^*,u^*)\) and further analyse the set of positive solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Bellettini, G.: A nonlocal anisotropic model for phase transitions I: the optimal profile problem. Math. Ann. 310(3), 527–560 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cabré, X., Sola-Morales, J.: Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58(12), 1678–1732 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caffarelli, L., Roquejoffre, J.M., Sire, Y.: Variational problems in free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12, 1151–1179 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Savin, O., Valdinoci, E.: Elliptic PDEs with fibered nonlinearities. J. Geom. Anal. 19(2), 420–432 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. Se MA 49, 33–44 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison-Wesley, Reading (1994)

    Google Scholar 

  8. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Barrios, B., Colorado, E., de Pable, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brändle, C., Colorado, E., de Pable, A., Sánchez, U.: A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. 143(A), 39–71 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacian I: regularity, maximum principles, and Hamiltonion estimates. Ann. Inst. Henri Poincaré(c) Anal. Nonlineaire 31, 23–53 (2014)

    Article  MATH  Google Scholar 

  13. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacian II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367, 911–941 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chang, X.J., Wang, Z.Q.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256, 2965–2992 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ros-Oton, X., Serra, J.: The Poho\(\check{\text{ z }}\)aev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213(2), 587–628 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ros-Oton, X., Serra, J.: Nonexitence results for nonlocal equations with critical and supercritical nonlinearities. Comm. Partial Differ. Equ. 40(1), 115–133 (2015)

    Article  MATH  Google Scholar 

  18. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. 142(A), 1238–1262 (2012)

    MATH  Google Scholar 

  19. Lions, P.L.: The concentration-compactness principle in the calculus of variations, The locally compactcase case, part 1 and part 2. Ann. Inst. Henri Poincaré(c) Anal. Nonlineaire 1, 109–145; 223–283 (1984)

  20. Iannizzotto, A., Mosconi, S., Squassina, M.: \({H}^s\) versus \({C}^0\)-weighted minimizers. Nonlinear Differ. Equ. Appl. 22, 477–497 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. (A) 33(5), 2105–2137 (2013)

    MATH  MathSciNet  Google Scholar 

  22. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  25. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Deutscher Verlag Wissensch, Berlin (1978)

    MATH  Google Scholar 

  26. Brezis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 58, 137–151 (1979)

    MATH  MathSciNet  Google Scholar 

  27. Bahri, A., Lions, P.L.: On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. Henri Poincaré(c) Anal. Nonlineaire 14(3), 365–413 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Royden, H.L., Fitzpatrick, P.M.: Real Analysis, 4th edn. Pearson Education, London (2010)

    MATH  Google Scholar 

  29. Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  30. Adachi, S., Tanaka, K.: Existence of positive solutions for a class of nonhomogeneous elliptic equations in \(\mathbb{R}^n\). Nonlinear Anal. 48, 685–705 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Fu.

Additional information

Communicated by A. Malchiodi.

Bingliang Li is supported by the National Natural Science Foundation of China (Nos. 11371110, 11601103) while Yongqiang Fu by the National Natural Science Foundation of China (No. 11371110).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Fu, Y. Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear fractional Laplacian problems. Calc. Var. 56, 165 (2017). https://doi.org/10.1007/s00526-017-1257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1257-y

Mathematics Subject Classification

Navigation