Skip to main content

Advertisement

Log in

Asymptotic behaviors of Landau–Lifshitz flows from \(\mathbb {R}^2\) to Kähler manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the asymptotic behaviors of finite energy solutions to the Landau–Lifshitz flows from \(\mathbb {R}^2\) into Kähler manifolds. First, we prove that the solution with initial data below the critical energy converges to a constant map in the energy space as \(t\rightarrow \infty \) for the compact Riemannian surface targets. In particular, when the target is a two dimensional sphere, we prove that the solution to the Landau–Lifshitz–Gilbert equation with initial data having an energy below \(4\pi \) converges to some constant map in the energy space. The proof bases on the method of induction on energy and geometric renormalizations. Second, for general compact Kähler manifolds and initial data of an arbitrary finite energy, we obtain a bubbling theorem analogous to the Struwe’s results on the heat flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges, F., Soyeur, A.: On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18(11), 1071–1084 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bejenaru, I., Ionescu, A.D., Kenig, C.E.: Global existence and uniqueness of Schrödinger maps in dimensions \(d\ge 4\). Adv. Math. 215(1), 263–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Global Schrödinger maps in dimensions \(d\ge 2\): small data in the critical Sobolev spaces. Ann. Math. 173(3), 1443–1506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Equivariant Schrödinger maps in two spatial dimensions. Duke Math. J. 162(11), 1967–2025 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Equivariant Schrödinger Maps in two spatial dimensions: the \(\mathbb{H}^2\) target. Kyoto J. Math. 56, 283–323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Am. Math. Soc. 12(1), 145–171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in \(R^3\). Commun. Appl. Anal. 5(1), 17–30 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Chang, K.C., Ding, W.Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36(2), 507–515 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, N.H., Shatah, J., Uhlenbeck, K.: Schrödinger maps. Commun. Pure Appl. Math. 53(5), 590–602 (2000)

    Article  MATH  Google Scholar 

  10. Ding, W., Wang, Y.: Local Schrödinger flow into Kähler manifolds. Sci. China Ser. A 44, 1446–1464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, B., Hong, M.: The Landau–Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. Partial Differ. Equ. 1(3), 311–334 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gustafson, S., Kang, K., Tsai, T.P.: Schrödinger flow near harmonic maps. Commun. Pure Appl. Math. 60(4), 463–499 (2007)

    Article  MATH  Google Scholar 

  13. Gustafson, S., Kang, K., Tsai, T.P.: Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math. J. 145(3), 537–583 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gustafson, S., Nakanishi, K., Tsai, T.P.: Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schrödinger maps on \(\mathbb{R}^2\). Commun. Math. Phys. 300(1), 205–242 (2010)

    Article  MATH  Google Scholar 

  15. Harpes, P.: Uniqueness and bubbling of the 2-dimensional Landau–Lifshitz flow. Calc. Var. Partial Differ. Equ. 20(2), 213–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jost, J.: Two Dimensional Geometric Variational Problems. Wiley, New York (1991)

    MATH  Google Scholar 

  17. Kenig, C., Lamm, T., Pollack, D., Staffilani, G., Toro, T.: The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete Contin. Dyn. Syst. 27, 389–439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ko, J.: The construction of a partially regular solution to the Landau–Lifshitz–Gilbert equation in \(R^2\). Nonlinearity 18, 2681–2714 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Landau, L., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sovietunion 8, 153–169 (1935)

    MATH  Google Scholar 

  20. McGahagan, H.: An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ. 32(3), 375–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Melcher, C.: Existence of partially regular solutions for Landau–Lifshitz equations in \(R^3\). Commun. Partial Differ. Equ. 30(4), 567–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Merle, F., Raphael, P., Rodnianski, I.: Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math. 193(2), 249–365 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morrey, C.B.: The problem of Plateau on a Riemannian manifold. Ann. Math. 49(4), 807–851 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nahmod, A., Shatah, J., Vega, L., Zeng, C.: Schrödinger maps and their associated frame systems. Int. Math. Res. Not. IMRN 21(21), 58–45 (2007)

    MATH  Google Scholar 

  25. Parker, T.: Bubble tree convergence for harmonic maps. J. Differ. Geom. 3(1), 63–98 (1993)

    Google Scholar 

  26. Perelman, G.: Blow up dynamics for equivariant critical Schrödinger maps. Commun. Math. Phys. 330(1), 69–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qing, J.: On singularities of the heat flow for harmonic maps from surfaces into spheres. Commun. Anal. Geom. 3(1–2), 297–315 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rodnianski, I., Rubinstein, Y., Staffilani, G.: On the global well-posedness of the one-dimensional Schrödinger map flow. Anal. PDE 2(2), 187–209 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schoen, R., Yau, S.T.: Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv. 39, 333–341 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Smith, P.: Geometric renormalization below the ground state. Int. Math. Res. Not. IMRN 16, 3800–3844 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sterbenz, J., Tataru, D.: Regularity of wave-maps in dimension \(2+ 1\). Commun. Math. Phys. 298(1), 231–264 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sterbenz, J., Tataru, D.: Energy dispersed large data wave maps in \(2+ 1\) dimensions. Commun. Math. Phys. 298(1), 139–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Struwe, M.: On the evolution of harmonic maps of Riemannian surfaces. Comment. Math. Helv. 60, 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sulem, P.L., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107(3), 431–454 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. American Mathematical Society, Providence (2006)

    Book  MATH  Google Scholar 

  38. Tao, T.: Global regularity of wave maps VII. Control of delocalised or dispersed solutions (2009). arXiv preprint arXiv:0908.0776

  39. Wang, C.: On Landau–Lifshitz equation in dimensions at most four. Indiana Univ. Math. J. 55, 1615–1644 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1983)

    Article  MATH  Google Scholar 

  41. Zhou, Y.L., Guo, B.L., Tan, S.B.: Existence and uniqueness of smooth solution for system of ferromagnetic chain. Sci. China Ser. A 34(3), 257–266 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Youde Wang and Hao Yin for helpful discussions and encouragements. And we thank the referee for helpful comments and improvements of our paper. L. Zhao has been partially supported by the NSFC Grant of China (Nos. 10901148 and 11371337) and the Fundamental Research Funds for the Central Universities (WK3470000005). L. Zhao is also supported by Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhao.

Additional information

Communicated by M. Struwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, L. Asymptotic behaviors of Landau–Lifshitz flows from \(\mathbb {R}^2\) to Kähler manifolds. Calc. Var. 56, 96 (2017). https://doi.org/10.1007/s00526-017-1182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1182-0

Mathematics Subject Classification

Navigation