Abstract
In this paper, we study the asymptotic behaviors of finite energy solutions to the Landau–Lifshitz flows from \(\mathbb {R}^2\) into Kähler manifolds. First, we prove that the solution with initial data below the critical energy converges to a constant map in the energy space as \(t\rightarrow \infty \) for the compact Riemannian surface targets. In particular, when the target is a two dimensional sphere, we prove that the solution to the Landau–Lifshitz–Gilbert equation with initial data having an energy below \(4\pi \) converges to some constant map in the energy space. The proof bases on the method of induction on energy and geometric renormalizations. Second, for general compact Kähler manifolds and initial data of an arbitrary finite energy, we obtain a bubbling theorem analogous to the Struwe’s results on the heat flows.
Similar content being viewed by others
References
Alouges, F., Soyeur, A.: On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18(11), 1071–1084 (1992)
Bejenaru, I., Ionescu, A.D., Kenig, C.E.: Global existence and uniqueness of Schrödinger maps in dimensions \(d\ge 4\). Adv. Math. 215(1), 263–291 (2007)
Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Global Schrödinger maps in dimensions \(d\ge 2\): small data in the critical Sobolev spaces. Ann. Math. 173(3), 1443–1506 (2011)
Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Equivariant Schrödinger maps in two spatial dimensions. Duke Math. J. 162(11), 1967–2025 (2013)
Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Equivariant Schrödinger Maps in two spatial dimensions: the \(\mathbb{H}^2\) target. Kyoto J. Math. 56, 283–323 (2016)
Bourgain, J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Am. Math. Soc. 12(1), 145–171 (1999)
Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in \(R^3\). Commun. Appl. Anal. 5(1), 17–30 (2001)
Chang, K.C., Ding, W.Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36(2), 507–515 (1992)
Chang, N.H., Shatah, J., Uhlenbeck, K.: Schrödinger maps. Commun. Pure Appl. Math. 53(5), 590–602 (2000)
Ding, W., Wang, Y.: Local Schrödinger flow into Kähler manifolds. Sci. China Ser. A 44, 1446–1464 (2001)
Guo, B., Hong, M.: The Landau–Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. Partial Differ. Equ. 1(3), 311–334 (1993)
Gustafson, S., Kang, K., Tsai, T.P.: Schrödinger flow near harmonic maps. Commun. Pure Appl. Math. 60(4), 463–499 (2007)
Gustafson, S., Kang, K., Tsai, T.P.: Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math. J. 145(3), 537–583 (2008)
Gustafson, S., Nakanishi, K., Tsai, T.P.: Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schrödinger maps on \(\mathbb{R}^2\). Commun. Math. Phys. 300(1), 205–242 (2010)
Harpes, P.: Uniqueness and bubbling of the 2-dimensional Landau–Lifshitz flow. Calc. Var. Partial Differ. Equ. 20(2), 213–229 (2004)
Jost, J.: Two Dimensional Geometric Variational Problems. Wiley, New York (1991)
Kenig, C., Lamm, T., Pollack, D., Staffilani, G., Toro, T.: The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete Contin. Dyn. Syst. 27, 389–439 (2010)
Ko, J.: The construction of a partially regular solution to the Landau–Lifshitz–Gilbert equation in \(R^2\). Nonlinearity 18, 2681–2714 (2005)
Landau, L., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sovietunion 8, 153–169 (1935)
McGahagan, H.: An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ. 32(3), 375–400 (2007)
Melcher, C.: Existence of partially regular solutions for Landau–Lifshitz equations in \(R^3\). Commun. Partial Differ. Equ. 30(4), 567–587 (2005)
Merle, F., Raphael, P., Rodnianski, I.: Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math. 193(2), 249–365 (2013)
Morrey, C.B.: The problem of Plateau on a Riemannian manifold. Ann. Math. 49(4), 807–851 (1948)
Nahmod, A., Shatah, J., Vega, L., Zeng, C.: Schrödinger maps and their associated frame systems. Int. Math. Res. Not. IMRN 21(21), 58–45 (2007)
Parker, T.: Bubble tree convergence for harmonic maps. J. Differ. Geom. 3(1), 63–98 (1993)
Perelman, G.: Blow up dynamics for equivariant critical Schrödinger maps. Commun. Math. Phys. 330(1), 69–105 (2014)
Qing, J.: On singularities of the heat flow for harmonic maps from surfaces into spheres. Commun. Anal. Geom. 3(1–2), 297–315 (1995)
Rodnianski, I., Rubinstein, Y., Staffilani, G.: On the global well-posedness of the one-dimensional Schrödinger map flow. Anal. PDE 2(2), 187–209 (2009)
Schoen, R., Yau, S.T.: Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv. 39, 333–341 (1976)
Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)
Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983)
Smith, P.: Geometric renormalization below the ground state. Int. Math. Res. Not. IMRN 16, 3800–3844 (2012)
Sterbenz, J., Tataru, D.: Regularity of wave-maps in dimension \(2+ 1\). Commun. Math. Phys. 298(1), 231–264 (2010)
Sterbenz, J., Tataru, D.: Energy dispersed large data wave maps in \(2+ 1\) dimensions. Commun. Math. Phys. 298(1), 139–230 (2010)
Struwe, M.: On the evolution of harmonic maps of Riemannian surfaces. Comment. Math. Helv. 60, 558–581 (1985)
Sulem, P.L., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107(3), 431–454 (1986)
Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. American Mathematical Society, Providence (2006)
Tao, T.: Global regularity of wave maps VII. Control of delocalised or dispersed solutions (2009). arXiv preprint arXiv:0908.0776
Wang, C.: On Landau–Lifshitz equation in dimensions at most four. Indiana Univ. Math. J. 55, 1615–1644 (2006)
Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1983)
Zhou, Y.L., Guo, B.L., Tan, S.B.: Existence and uniqueness of smooth solution for system of ferromagnetic chain. Sci. China Ser. A 34(3), 257–266 (1991)
Acknowledgements
The authors thank Professor Youde Wang and Hao Yin for helpful discussions and encouragements. And we thank the referee for helpful comments and improvements of our paper. L. Zhao has been partially supported by the NSFC Grant of China (Nos. 10901148 and 11371337) and the Fundamental Research Funds for the Central Universities (WK3470000005). L. Zhao is also supported by Youth Innovation Promotion Association CAS.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Struwe.
Rights and permissions
About this article
Cite this article
Li, Z., Zhao, L. Asymptotic behaviors of Landau–Lifshitz flows from \(\mathbb {R}^2\) to Kähler manifolds. Calc. Var. 56, 96 (2017). https://doi.org/10.1007/s00526-017-1182-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00526-017-1182-0