Multiple positive solutions of the stationary Keller–Segel system

  • Denis Bonheure
  • Jean-Baptiste Casteras
  • Benedetta NorisEmail author


We consider the stationary Keller–Segel equation
$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta v+v=\lambda e^v, \quad v>0 \quad &{} \text {in }\Omega ,\\ \partial _\nu v=0 &{}\text {on } \partial \Omega , \end{array}\right. } \end{aligned}$$
where \(\Omega \) is a ball. In the regime \(\lambda \rightarrow 0\), we study the radial bifurcations and we construct radial solutions by a gluing variational method. For any given \(n\in \mathbb {N}_0\), we build a solution having multiple layers at \(r_1,\ldots ,r_n\) by which we mean that the solutions concentrate on the spheres of radii \(r_i\) as \(\lambda \rightarrow 0\) (for all \(i=1,\ldots ,n\)). A remarkable fact is that, in opposition to previous known results, the layers of the solutions do not accumulate to the boundary of \(\Omega \) as \(\lambda \rightarrow 0\). Instead they satisfy an optimal partition problem in the limit.

Mathematics Subject Classification

35J25 35B05 35B09 35B25 35B32 35B40 


  1. 1.
    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Biler, P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8(2), 715–743 (1998)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bonheure, D., Grossi, M., Noris, B., Terracini, S.: Multi-layer radial solutions for a supercritical Neumann problem. J. Differ. Equ. 261(1), 455–504 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonheure, D., Grumiau, C., Troestler, C.: Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions. Nonlinear Anal. Theory Methods Appl. 147, 236–273 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonheure, D., Noris, B., Weth, T.: Increasing radial solutions for Neumann problems without growth restrictions. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(4), 573–588 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonheure, D., Serra, E.: Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth. NoDEA Nonlinear Differ. Equ. Appl. 18(2), 217–235 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u= V (x) e^u\) in two dimensions. Commun. Partial Differ. Equ. 16(8–9), 1223–1253 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Catrina, F.: A note on a result of M. Grossi. Proc. Am. Math. Soc. 137(11), 3717–3724 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dancer, E.N., Yan, S.: Multipeak solutions for a singularly perturbed Neumann problem. Pac. J. Math. 189(2), 241–262 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    del Pino, M., Musso, M., Román, C., Wei, J.: Interior bubbling solutions for the critical Lin–Ni–Takagi problem in dimension 3. To appear in Journal d’Analyse Mathematique (2017)Google Scholar
  12. 12.
    del Pino, M., Pistoia, A., Vaira, G.: Large mass boundary condensation patterns in the stationary keller–Segel system. J. Differ. Equ. 261(6), 3414–3462 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    del Pino, M., Wei, J.: Collapsing steady states of the Keller–Segel system. Nonlinearity 19(3), 661–684 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dinca, G., Mawhin, J.: Brouwer degree and applications. Preprint (2009)Google Scholar
  15. 15.
    Doedel, E., Oldeman, B.: Auto-07p : continuation and bifurcation software for ordinary differential equations. Concordia University. (2012)
  16. 16.
    Grossi, M.: Asymptotic behaviour of the Kazdan–Warner solution in the annulus. J. Differ. Equ. 223(1), 96–111 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gui, C., Wei, J.: Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differ. Equ. 158(1), 1–27 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math. Verein. 105(3), 103–165 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein. 106(2), 51–69 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kabeya, Y., Ni, W.-M.: Stationary Keller–Segel model with the linear sensitivity. Sūrikaisekikenkyūsho Kōkyūroku (1025), 44–65. Variational problems and related topics (Japanese) (Kyoto, 1997) (1998)Google Scholar
  21. 21.
    Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)CrossRefzbMATHGoogle Scholar
  22. 22.
    Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72(1), 1–27 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mahmoudi, F., Malchiodi, A.: Concentration on minimal submanifolds for a singularly perturbed Neumann problem. Adv. Math. 209(2), 460–525 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mahmoudi, F., Sánchez, F.S., Yao, W.: On the Ambrosetti–Malchiodi–Ni conjecture for general submanifolds. J. Differ. Equ. 258(2), 243–280 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Malchiodi, A., Montenegro, M.: Boundary concentration phenomena for a singularly perturbed elliptic problem. Commun. Pure Appl. Math. 55(12), 1507–1568 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Malchiodi, A., Ni, W.-M., Wei, J.: Multiple clustered layer solutions for semilinear Neumann problems on a ball. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(2), 143–163 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40(3), 411–433 (1997)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Of Standards, N. I. and Technology. Digital library of mathematical functions.
  29. 29.
    Pistoia, A., Vaira, G.: Steady states with unbounded mass of the Keller–Segel system. Proc. R. Soc. Edinb. Sect. A 145(1), 203–222 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Senba, T., Suzuki, T.: Some structures of the solution set for a stationary system of chemotaxis. Adv. Math. Sci. Appl. 10(1), 191–224 (2000)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Serra, E., Tilli, P.: Monotonicity constraints and supercritical Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(1), 63–74 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, G., Wei, J.: Steady state solutions of a reaction–diffusion system modeling chemotaxis. Math. Nachr. 233(234), 221–236 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Denis Bonheure
    • 1
  • Jean-Baptiste Casteras
    • 1
  • Benedetta Noris
    • 1
    Email author
  1. 1.Département de MathématiqueUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations