Skip to main content
Log in

Monotonicity of solutions for some nonlocal elliptic problems in half-spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we consider classical solutions u of the semilinear fractional problem \((-\Delta )^s u = f(u)\) in \({\mathbb {R}}^N_+\) with \(u=0\) in \({\mathbb {R}}^N {\setminus } {\mathbb {R}}^N_+\), where \((-\Delta )^s\), \(0<s<1\), stands for the fractional laplacian, \(N\ge 2\), \({\mathbb {R}}^N_+=\{x=(x',x_N)\in {\mathbb {R}}^N{:}\ x_N>0\}\) is the half-space and \(f\in C^1\) is a given function. With no additional restriction on the function f, we show that bounded, nonnegative, nontrivial classical solutions are indeed positive in \({\mathbb {R}}^N_+\) and verify

$$\begin{aligned} \frac{\partial u}{\partial x_N}>0 \quad \hbox {in } {\mathbb {R}}^N_+. \end{aligned}$$

This is in contrast with previously known results for the local case \(s=1\), where nonnegative solutions which are not positive do exist and the monotonicity property above is not known to hold in general even for positive solutions when \(f(0)<0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Bellettini, G.: A nonlocal anisotropic model for phase transitions. I. The optimal profile problem. Math. Ann. 310(3), 527–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, vol. 2. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Berestycki, H., Caffarelli, L., Nirenberg, L.: Symmetry for elliptic equations in a half-space. In: Lions, J.L., et al. (eds.) Boundary Value Problems for Partial Differential Equations and Applications, Research Notes in Applied Mathematics, vol. 29, pp. 27–42. Masson, Paris (1993)

    Google Scholar 

  4. Berestycki, H., Caffarelli, L., Nirenberg, L.: Inequalities for second-order elliptic equations with applications to unbounded domains I. Duke Math. J. 81, 467–494 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Caffarelli, L., Nirenberg, L.: Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, 69–94 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Caffarelli, L., Nirenberg, L.: Monotonicity for elliptic equations in unbounded Lipschitz domains. Comm. Pure Appl. Math. L, 1089–1111 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertoin, J.: “Lévy Processes”, Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  8. Blumenthal, R.M., Getoor, R.K., Ray, D.B.: On the distribution of the first hits for the symmetric stable processes. Trans. Am. Math. Soc. 99, 540–554 (1961)

    MathSciNet  MATH  Google Scholar 

  9. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media, statistical mechanics, models and physical applications. Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  Google Scholar 

  10. Cabré, X., Sola-Morales, J.: Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58(12), 1678–1732 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.: Further regularity for the Signorini problem. Comm. Partial Differ. Equ. 4(9), 1067–1075 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L., Roquejoffre, J.M., Sire, Y.: Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12(5), 1151–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro differential equations. Comm. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200, 59–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L., Vasseur, L.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, W., Fang, Y., Yang, R.: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274, 167–198 (2015)

    Article  MathSciNet  Google Scholar 

  17. Constantin, P.: Euler equations, Navier-Stokes equations and turbulence. In: “Mathematical foundation of turbulent viscous flows”, Vol. 1871 of Lecture Notes in Mathematics. Springer, Berlin (2006)

  18. Cont, R., Tankov, P.: Financial Modelling with Jump Processes, CRC Financial Mathematics Series. Chapman & Hall, Boca Raton (2004)

    MATH  Google Scholar 

  19. Cortázar, C., Elgueta, M., García-Melián, J.: Nonnegative solutions of semilinear elliptic equations in half-spaces. J. Math. Pures Appl. 106, 866–876 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dancer, N.: On the number of positive solutions of weakly non-linear elliptic equations when a parameter is large. Proc. Lond. Math. Soc. 53, 429–452 (1986)

    Article  MATH  Google Scholar 

  21. Dancer, N.: Some notes on the method of moving planes. Bull. Aust. Math. Soc. 46(3), 425–434 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dipierro, S., Figalli, A., Valdinoci, E.: Strongly nonlocal dislocation dynamics in crystals. Comm. Partial Differ. Equ. 39(12), 2351–2387 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dipierro, S., Soave, N., Valdinoci, E.: On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results. Math. Ann. (2016). doi:10.1007/s00208-016-1487-x

  24. Dupaigne, L., Sire, Y.: A Liouville theorem for non local elliptic equations. In: Farina, A., Valdinoci, E. (eds.) Symmetry for Elliptic PDEs, Contemporary Mathematics, vol. 528. American Mathematical Society, Providence (2010)

    Google Scholar 

  25. Fall, M.M., Weth, T.: Monotonicity and nonexistence results for some fractional elliptic problems in the half space. Comm. Contemp. Math. 18, 1550012 (2016). (25 pages)

    Article  MathSciNet  MATH  Google Scholar 

  26. Farina, A., Sciunzi, B.: Qualitative properties and classification of nonnegative solutions to \(-\Delta u = f(u)\) in unbounded domains when \(f(0) < 0\). Rev. Mat. Iberoam. 32(4), 1311–1330 (2016)

  27. Farina, A., Soave, N.: Symmetry and uniqueness of nonnegative solutions of some problems in the halfspace. J. Math. Anal. Appl. 403, 215–233 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Felmer, P., Wang, Y.: Radial symmetry of positive solutions to equations involving the fractional laplacian. Comm. Contemp. Math. 16, 1350023 (2014). (24 pages)

    Article  MathSciNet  MATH  Google Scholar 

  29. Quaas, A., Salort, A., Xia, A.: Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term. http://arxiv.org/abs/1605.09787

  30. Quaas, A., Xia, A.: Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space. Calc. Var. Part. Diff. Equ. 52, 641–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Savin, O., Valdinoci, E.: Elliptic PDEs with fibered nonlinearities. J. Geom. Anal. 19(2), 420–432 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Cont. Dyn. Syst. 33, 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Signorini, A.: Questioni di elasticitá non linearizzata e semilinearizzata. Rendiconti di Matematica e delle sue applicazioni 18, 95–139 (1959)

    MathSciNet  MATH  Google Scholar 

  35. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tarasov, V., Zaslasvky, G.: Fractional dynamics of systems with long-range interaction. Comm. Nonl. Sci. Numer. Simul. 11, 885–889 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Toland, J.: The Peierls–Nabarro and Benjamin–Ono equations. J. Funct. Anal. 145(1), 136–150 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

B. B. was partially supported by MEC Juan de la Cierva postdoctoral fellowship number FJCI-2014-20504 (Spain). L. D. P. was partially supported by PICT2012 0153 from ANPCyT (Argentina). B. B., J. G-M. and A. Q. were partially supported by Ministerio de Ciencia e Innovación under grant MTM2014-52822-P (Spain). A. Q. was also partially supported by Fondecyt Grant No. 1151180 Programa Basal, CMM. U. de Chile and Millennium Nucleus Center for Analysis of PDE NC130017. B. B. and J. G-M. would like to thank the Mathematics Department of Universidad Técnica Federico Santa María where part of this work has been done for its kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. García-Melián.

Additional information

Communicated by L. Caffarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrios, B., Del Pezzo, L., García-Melián, J. et al. Monotonicity of solutions for some nonlocal elliptic problems in half-spaces. Calc. Var. 56, 39 (2017). https://doi.org/10.1007/s00526-017-1133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1133-9

Mathematics Subject Classification

Navigation