Abstract
We study local behavior of positive solutions to the fractional Yamabe equation with a singular set of fractional capacity zero.
This is a preview of subscription content, access via your institution.
References
Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bull. Braz. Math. Soc. 22, 1–37 (1991)
Cabre, X., Sire, Y.: Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 23–53 (2014)
Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)
Caffarelli, L., Jin, T., Sire, Y., Xiong, J.: Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities. Arch. Ration. Mech. Anal. 213(1), 245–268 (2014)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)
Chang, S.-Y.A., González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)
Chen, C.C., Lin, C.-S.: Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent. Duke Math. J. 78(2), 315–334 (1995)
Choi, W., Kim, S.: On perturbations of the fractional Yamabe problem. arXiv:1501.00641 (2016)
Chua, S.-K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41(4), 1027–1076 (1992)
DelaTorre, A., González, M.: Isolated singularities for a semilinear equation for the fractional Laplacian arising in conformal geometry. Preprint. arXiv.1504.03493 (2016)
DelaTorre, A., del Pino, M., Gonzalez, M.D.M., Wei, J.: Delaunay-type singular solutions for the fractional Yamabe Problem. Preprint. arXiv:1510.08504 (2016)
Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of \({\mathbb{R}}^n\). Preprint. arXiv:1506.01748 (2016)
Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)
Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7, 77–116 (1982)
Fabes, E., Jerison, D., Kenig, C.: The Wiener test for degenerate elliptic equations. Ann. Inst. Fourier (Grenoble) 32, 151–182 (1982)
González, M., Mazzeo, R., Sire, Y.: Singular solutions of fractional order conformal Laplacians. J. Geom. Anal. 22, 845–863 (2012)
González, M., Qing, J.: Fractional conformal Laplacians and fractional Yamabe problems. Anal. PDE 6(7), 1535–1576 (2013)
González, M., Wang, M.: Further results on the fractional Yamabe problem: the umbilic case. arXiv:1503.02862 (2016)
Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)
Graham, C.R., Jenne, R., Mason, L.J., Sparling, G.A.J.: Conformally invariant powers of the Laplacian I Existence. J. Lond. Math. Soc. 46(2), 557–565 (1992)
Han, Z.-C., Li, Y.Y., Teixeira, E.V.: Asymptotic behavior of solutions to the \(\sigma _k\)-Yamabe equation near isolated singularities. Invent. Math. 182(3), 635–684 (2010)
Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993)
Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. (JEMS) 16(6), 1111–1171 (2014)
Juhl, A.: Families of conformally covariant differential operators, \(Q\)-curvature and holography. Progress in Mathematics, vol. 275. Birkhäuser Verlag, Basel (2009)
Kim, S., Musso, M., Wei, J.: A non-compactness result on the fractional Yamabe problem in large dimensions. arXiv:1505.06183 (2016)
Kim, S., Musso, M., Wei, J.: Existence theorems of the fractional Yamabe problem. Preprint arXiv:1603.06617v1 (2016)
Korevaar, N., Mazzeo, R., Pacard, F., Schoen, R.: Refined asymptotics for constant scalar curvature metrics with isolated singularities. Invent. Math. 135(2), 233–272 (1999)
Li, C.: Local asymptotic symmetry of singular solutions to nonlinear elliptic equations. Invent. Math. 123(2), 221–2231 (1996)
Li, Y.Y.: Conformally invariant fully nonlinear elliptic equations and isolated singularities. J. Funct. Anal. 233, 380–425 (2006)
Li, Y.Y., Zhang, L.: Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations. J. Anal. Math. 90, 27–87 (2003)
Li, Y.Y., Zhu, M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80, 383–418 (1995)
Mazzeo, R., Pacard, F.: A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. J. Differ. Geom. 44(2), 331–370 (1996)
Peterson, L.J.: Conformally covariant pseudo-differential operators. Differ. Geom. Appl. 13(2), 197–211 (2000)
Qing, J., Raske, D.: On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds. Int. Math. Res. Not. Art. ID 94172, p. 20 (2006)
Schoen, R.: The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Commun. Pure Appl. Math. 41(3), 317–392 (1988)
Schoen, R., Yau, S.-T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47–71 (1988)
Tan, J., Xiong, J.: A Harnack inequality for fractional Laplace equations with lower order terms. Discrete Contin. Dyn. Syst. 31, 975–983 (2011)
Zhang, L.: Refined asymptotic estimates for conformal scalar curvature equation via moving sphere method. J. Funct. Anal. 192(2), 491–516 (2002)
Zhang, R.: Non-local Curvature and Topology of Locally Conformally Flat Manifolds. Preprint arXiv:1510.00957v1 (2015)
Acknowledgements
the authors would like to thank the referee for his/her valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by L. Caffarelli.
T. Jin: Supported in part by Hong Kong RGC Grant ECS 26300716. O. S. de Queiroz: Partially supported by CNPq-Brazil. J. Xiong: Supported in part by NSFC 11501034, NSFC 11571019, Beijing MCESEDD (20131002701) and the Fundamental Research Funds for the Central Universities.
Rights and permissions
About this article
Cite this article
Jin, T., de Queiroz, O.S., Sire, Y. et al. On local behavior of singular positive solutions to nonlocal elliptic equations. Calc. Var. 56, 9 (2017). https://doi.org/10.1007/s00526-016-1102-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00526-016-1102-8