Advertisement

\(L^p\)-spectrum of the Dirac operator on products with hyperbolic spaces

  • Bernd Ammann
  • Nadine Große
Article

Abstract

We study the \(L^p\)-spectrum of the Dirac operator on complete manifolds. One of the main questions in this context is whether this spectrum depends on p. As a first example where p-independence fails we compute explicitly the \(L^p\)-spectrum for the hyperbolic space and its product with compact spaces.

Mathematics Subject Classification

58J50 34B27 

Notes

Acknowledgments

We thank an anonymous referee for many helpful comments.

References

  1. 1.
    Abels, H.: Pseudodifferential and Singular Integral Operators. An Introduction with Applications. De Gruyter Graduate Lectures. De Gruyter, Berlin (2012)Google Scholar
  2. 2.
    Ammann, B.: A variational problem in conformal spin geometry. Habilitation thesis. University of Hamburg, Germany (2003)Google Scholar
  3. 3.
    Ammann, B., Dahl, M., Humbert, E.: Surgery and the spinorial \(\tau \)-invariant. Commun. Partial Differ. Equ. 34(10–12), 1147–1179 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ammann, B., Dahl, M., Humbert, E.: Harmonic spinors and local deformations of the metric. Math. Res. Lett. 18(5), 927–936 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ammann, B., Große, N.: Relations between threshold constants for Yamabe type bordism invariants. J. Geom. Anal. 26(4), 2842–2882 (2016). doi: 10.1007/s12220-015-9651-1. arXiv:1502.05232
  6. 6.
    Ammann, B., Humbert, E., Morel, B.: Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds. Commun. Anal. Geom. 14(1), 163–182 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bär, C.: Das Spektrum von Dirac-Operatoren. Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 217. Universität Bonn, Mathematisches Institut, Bonn, 1991. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1990)Google Scholar
  8. 8.
    Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom. 16(6), 573–596 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144(3), 581–599 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bunke, U.: The spectrum of the Dirac operator on the hyperbolic space. Math. Nachr. 153, 179–190 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cahen, M., Gutt, S., Lemaire, L., Spindel, P.: Killing spinors. Bull. Soc. Math. Belg. Sér. A 38(1986), 75–102 (1987)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Camporesi, R., Higuchi, A.: On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys. 20(1), 1–18 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Charalambous, N.: On the \(L^p\) independence of the spectrum of the Hodge Laplacian on non-compact manifolds. J. Funct. Anal. 224(1), 22–48 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company Inc., New York (1955)zbMATHGoogle Scholar
  16. 16.
    Davies, E.B.: Heat Kernels and Spectral Theory, vol. 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1990)Google Scholar
  17. 17.
    Davies, E.B.: \(L^p\) spectral theory of higher-order elliptic differential operators. Bull. Lond. Math. Soc. 29(5), 513–546 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Davies, E.B., Simon, B., Taylor, M.: \(L^p\) spectral theory of Kleinian groups. J. Funct. Anal. 78(1), 116–136 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25. AMS, Providence (2000)Google Scholar
  20. 20.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001) (Reprint of the 1998 edition)Google Scholar
  21. 21.
    Große, N.: Solutions of the equation of a spinorial Yamabe-type problem on manifolds of bounded geometry. Commun. Partial Differ. Equ. 37, 58–76 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hempel, R., Voigt, J.: The spectrum of a Schrödinger operator in \(L_p({ R}^\nu )\) is \(p\)-independent. Commun. Math. Phys. 104(2), 243–250 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hempel, R., Voigt, J.: On the \(L_p\)-spectrum of Schrödinger operators. J. Math. Anal. Appl. 121(1), 138–159 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Ji, L., Weber, A.: Dynamics of the heat semigroup on symmetric spaces. Ergod. Theory Dyn. Syst. 30(2), 457–468 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Ji, L., Weber, A.: \(L^p\) spectral theory and heat dynamics of locally symmetric spaces. J. Funct. Anal. 258(4), 1121–1139 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ji, L., Weber, A.: The \(L^p\) spectrum and heat dynamics of locally symmetric spaces of higher rank. Ergod. Theory Dyn. Syst. 35(5), 1524–1545 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Kordyukov, Y.A.: \(L^p\)-theory of elliptic differential operators on manifolds of bounded geometry. Acta Appl. Math. 23(3), 223–260 (1991)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  29. 29.
    Lohoué, N., Rychener, T.: Die Resolvente von \(\Delta \) auf symmetrischen Räumen vom nichtkompakten Typ. Comment. Math. Helv. 57(3), 445–468 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1975)zbMATHGoogle Scholar
  31. 31.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis, 2nd edn. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980)zbMATHGoogle Scholar
  32. 32.
    Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36(2), 417–450 (1992)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Sepanski, M.R.: Compact Lie Groups, vol. 235 of Graduate Texts in Mathematics. Springer, New York (2007)Google Scholar
  34. 34.
    Sturm, K.-T.: On the \(L^p\)-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal. 118(2), 442–453 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)zbMATHGoogle Scholar
  36. 36.
    Taylor, M.E.: \(L^p\)-estimates on functions of the Laplace operator. Duke Math. J. 58(3), 773–793 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Wang, J.: The spectrum of the Laplacian on a manifold of nonnegative Ricci curvature. Math. Res. Lett. 4(4), 473–479 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Reprint. Graduate Texts in Mathematics, vol. 94, p. IX, 272. Springer, New York (1983)Google Scholar
  39. 39.
    Weber, A.: Heat kernel estimates and \({L}^p\)-spectral theory of locally symmetric spaces. Dissertation (2007). doi: 10.5445/KSP/1000005774
  40. 40.
    Werner, D.: Funktionalanalysis, extended edn. Springer, Berlin (2000)Google Scholar
  41. 41.
    Wolf, J.A.: Essential self-adjointness for the Dirac operator and its square. Indiana Univ. Math. J. 22, 611–640 (1972/73)Google Scholar
  42. 42.
    Yosida, K.: Functional Analysis, vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 6th edn. Springer, Berlin (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Mathematisches InstitutUniversität FreiburgFreiburgGermany

Personalised recommendations