# \(L^p\)-spectrum of the Dirac operator on products with hyperbolic spaces

Article

First Online:

Received:

Accepted:

- 121 Downloads
- 2 Citations

## Abstract

We study the \(L^p\)-spectrum of the Dirac operator on complete manifolds. One of the main questions in this context is whether this spectrum depends on *p*. As a first example where *p*-independence fails we compute explicitly the \(L^p\)-spectrum for the hyperbolic space and its product with compact spaces.

## Mathematics Subject Classification

58J50 34B27## Notes

### Acknowledgments

We thank an anonymous referee for many helpful comments.

## References

- 1.Abels, H.: Pseudodifferential and Singular Integral Operators. An Introduction with Applications. De Gruyter Graduate Lectures. De Gruyter, Berlin (2012)Google Scholar
- 2.Ammann, B.: A variational problem in conformal spin geometry. Habilitation thesis. University of Hamburg, Germany (2003)Google Scholar
- 3.Ammann, B., Dahl, M., Humbert, E.: Surgery and the spinorial \(\tau \)-invariant. Commun. Partial Differ. Equ.
**34**(10–12), 1147–1179 (2009)MathSciNetMATHCrossRefGoogle Scholar - 4.Ammann, B., Dahl, M., Humbert, E.: Harmonic spinors and local deformations of the metric. Math. Res. Lett.
**18**(5), 927–936 (2011)MathSciNetMATHCrossRefGoogle Scholar - 5.Ammann, B., Große, N.: Relations between threshold constants for Yamabe type bordism invariants. J. Geom. Anal. 26(4), 2842–2882 (2016). doi: 10.1007/s12220-015-9651-1. arXiv:1502.05232
- 6.Ammann, B., Humbert, E., Morel, B.: Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds. Commun. Anal. Geom.
**14**(1), 163–182 (2006)MathSciNetMATHCrossRefGoogle Scholar - 7.Bär, C.: Das Spektrum von Dirac-Operatoren. Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 217. Universität Bonn, Mathematisches Institut, Bonn, 1991. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1990)Google Scholar
- 8.Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom.
**16**(6), 573–596 (1998)MathSciNetMATHCrossRefGoogle Scholar - 9.Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z.
**249**(3), 545–580 (2005)MathSciNetMATHCrossRefGoogle Scholar - 10.Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys.
**144**(3), 581–599 (1992)MathSciNetMATHCrossRefGoogle Scholar - 11.Bunke, U.: The spectrum of the Dirac operator on the hyperbolic space. Math. Nachr.
**153**, 179–190 (1991)MathSciNetMATHCrossRefGoogle Scholar - 12.Cahen, M., Gutt, S., Lemaire, L., Spindel, P.: Killing spinors. Bull. Soc. Math. Belg. Sér. A
**38**(1986), 75–102 (1987)MathSciNetMATHGoogle Scholar - 13.Camporesi, R., Higuchi, A.: On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys.
**20**(1), 1–18 (1996)MathSciNetMATHCrossRefGoogle Scholar - 14.Charalambous, N.: On the \(L^p\) independence of the spectrum of the Hodge Laplacian on non-compact manifolds. J. Funct. Anal.
**224**(1), 22–48 (2005)MathSciNetMATHCrossRefGoogle Scholar - 15.Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company Inc., New York (1955)MATHGoogle Scholar
- 16.Davies, E.B.: Heat Kernels and Spectral Theory, vol. 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1990)Google Scholar
- 17.Davies, E.B.: \(L^p\) spectral theory of higher-order elliptic differential operators. Bull. Lond. Math. Soc.
**29**(5), 513–546 (1997)MathSciNetMATHCrossRefGoogle Scholar - 18.Davies, E.B., Simon, B., Taylor, M.: \(L^p\) spectral theory of Kleinian groups. J. Funct. Anal.
**78**(1), 116–136 (1988)MathSciNetMATHCrossRefGoogle Scholar - 19.Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25. AMS, Providence (2000)Google Scholar
- 20.Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001) (Reprint of the 1998 edition)Google Scholar
- 21.Große, N.: Solutions of the equation of a spinorial Yamabe-type problem on manifolds of bounded geometry. Commun. Partial Differ. Equ.
**37**, 58–76 (2012)MathSciNetMATHCrossRefGoogle Scholar - 22.Hempel, R., Voigt, J.: The spectrum of a Schrödinger operator in \(L_p({ R}^\nu )\) is \(p\)-independent. Commun. Math. Phys.
**104**(2), 243–250 (1986)MathSciNetMATHCrossRefGoogle Scholar - 23.Hempel, R., Voigt, J.: On the \(L_p\)-spectrum of Schrödinger operators. J. Math. Anal. Appl.
**121**(1), 138–159 (1987)MathSciNetMATHCrossRefGoogle Scholar - 24.Ji, L., Weber, A.: Dynamics of the heat semigroup on symmetric spaces. Ergod. Theory Dyn. Syst.
**30**(2), 457–468 (2010)MathSciNetMATHCrossRefGoogle Scholar - 25.Ji, L., Weber, A.: \(L^p\) spectral theory and heat dynamics of locally symmetric spaces. J. Funct. Anal.
**258**(4), 1121–1139 (2010)MathSciNetMATHCrossRefGoogle Scholar - 26.Ji, L., Weber, A.: The \(L^p\) spectrum and heat dynamics of locally symmetric spaces of higher rank. Ergod. Theory Dyn. Syst.
**35**(5), 1524–1545 (2015)MathSciNetMATHCrossRefGoogle Scholar - 27.Kordyukov, Y.A.: \(L^p\)-theory of elliptic differential operators on manifolds of bounded geometry. Acta Appl. Math.
**23**(3), 223–260 (1991)MathSciNetMATHGoogle Scholar - 28.Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)MATHGoogle Scholar
- 29.Lohoué, N., Rychener, T.: Die Resolvente von \(\Delta \) auf symmetrischen Räumen vom nichtkompakten Typ. Comment. Math. Helv.
**57**(3), 445–468 (1982)MathSciNetMATHCrossRefGoogle Scholar - 30.Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1975)MATHGoogle Scholar
- 31.Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis, 2nd edn. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980)MATHGoogle Scholar
- 32.Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom.
**36**(2), 417–450 (1992)MathSciNetMATHGoogle Scholar - 33.Sepanski, M.R.: Compact Lie Groups, vol. 235 of Graduate Texts in Mathematics. Springer, New York (2007)Google Scholar
- 34.Sturm, K.-T.: On the \(L^p\)-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal.
**118**(2), 442–453 (1993)MathSciNetMATHCrossRefGoogle Scholar - 35.Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)MATHGoogle Scholar
- 36.Taylor, M.E.: \(L^p\)-estimates on functions of the Laplace operator. Duke Math. J.
**58**(3), 773–793 (1989)MathSciNetMATHCrossRefGoogle Scholar - 37.Wang, J.: The spectrum of the Laplacian on a manifold of nonnegative Ricci curvature. Math. Res. Lett.
**4**(4), 473–479 (1997)MathSciNetMATHCrossRefGoogle Scholar - 38.Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Reprint. Graduate Texts in Mathematics, vol. 94, p. IX, 272. Springer, New York (1983)Google Scholar
- 39.Weber, A.: Heat kernel estimates and \({L}^p\)-spectral theory of locally symmetric spaces. Dissertation (2007). doi: 10.5445/KSP/1000005774
- 40.Werner, D.: Funktionalanalysis, extended edn. Springer, Berlin (2000)Google Scholar
- 41.Wolf, J.A.: Essential self-adjointness for the Dirac operator and its square. Indiana Univ. Math. J.
**22**, 611–640 (1972/73)Google Scholar - 42.Yosida, K.: Functional Analysis, vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 6th edn. Springer, Berlin (1980)Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2016