\(L^p\)-spectrum of the Dirac operator on products with hyperbolic spaces

Article

Abstract

We study the \(L^p\)-spectrum of the Dirac operator on complete manifolds. One of the main questions in this context is whether this spectrum depends on p. As a first example where p-independence fails we compute explicitly the \(L^p\)-spectrum for the hyperbolic space and its product with compact spaces.

Mathematics Subject Classification

58J50 34B27 

References

  1. 1.
    Abels, H.: Pseudodifferential and Singular Integral Operators. An Introduction with Applications. De Gruyter Graduate Lectures. De Gruyter, Berlin (2012)Google Scholar
  2. 2.
    Ammann, B.: A variational problem in conformal spin geometry. Habilitation thesis. University of Hamburg, Germany (2003)Google Scholar
  3. 3.
    Ammann, B., Dahl, M., Humbert, E.: Surgery and the spinorial \(\tau \)-invariant. Commun. Partial Differ. Equ. 34(10–12), 1147–1179 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ammann, B., Dahl, M., Humbert, E.: Harmonic spinors and local deformations of the metric. Math. Res. Lett. 18(5), 927–936 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ammann, B., Große, N.: Relations between threshold constants for Yamabe type bordism invariants. J. Geom. Anal. 26(4), 2842–2882 (2016). doi:10.1007/s12220-015-9651-1. arXiv:1502.05232
  6. 6.
    Ammann, B., Humbert, E., Morel, B.: Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds. Commun. Anal. Geom. 14(1), 163–182 (2006)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bär, C.: Das Spektrum von Dirac-Operatoren. Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 217. Universität Bonn, Mathematisches Institut, Bonn, 1991. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1990)Google Scholar
  8. 8.
    Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom. 16(6), 573–596 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144(3), 581–599 (1992)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bunke, U.: The spectrum of the Dirac operator on the hyperbolic space. Math. Nachr. 153, 179–190 (1991)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cahen, M., Gutt, S., Lemaire, L., Spindel, P.: Killing spinors. Bull. Soc. Math. Belg. Sér. A 38(1986), 75–102 (1987)MathSciNetMATHGoogle Scholar
  13. 13.
    Camporesi, R., Higuchi, A.: On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys. 20(1), 1–18 (1996)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Charalambous, N.: On the \(L^p\) independence of the spectrum of the Hodge Laplacian on non-compact manifolds. J. Funct. Anal. 224(1), 22–48 (2005)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company Inc., New York (1955)MATHGoogle Scholar
  16. 16.
    Davies, E.B.: Heat Kernels and Spectral Theory, vol. 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1990)Google Scholar
  17. 17.
    Davies, E.B.: \(L^p\) spectral theory of higher-order elliptic differential operators. Bull. Lond. Math. Soc. 29(5), 513–546 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Davies, E.B., Simon, B., Taylor, M.: \(L^p\) spectral theory of Kleinian groups. J. Funct. Anal. 78(1), 116–136 (1988)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25. AMS, Providence (2000)Google Scholar
  20. 20.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001) (Reprint of the 1998 edition)Google Scholar
  21. 21.
    Große, N.: Solutions of the equation of a spinorial Yamabe-type problem on manifolds of bounded geometry. Commun. Partial Differ. Equ. 37, 58–76 (2012)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hempel, R., Voigt, J.: The spectrum of a Schrödinger operator in \(L_p({ R}^\nu )\) is \(p\)-independent. Commun. Math. Phys. 104(2), 243–250 (1986)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Hempel, R., Voigt, J.: On the \(L_p\)-spectrum of Schrödinger operators. J. Math. Anal. Appl. 121(1), 138–159 (1987)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ji, L., Weber, A.: Dynamics of the heat semigroup on symmetric spaces. Ergod. Theory Dyn. Syst. 30(2), 457–468 (2010)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Ji, L., Weber, A.: \(L^p\) spectral theory and heat dynamics of locally symmetric spaces. J. Funct. Anal. 258(4), 1121–1139 (2010)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Ji, L., Weber, A.: The \(L^p\) spectrum and heat dynamics of locally symmetric spaces of higher rank. Ergod. Theory Dyn. Syst. 35(5), 1524–1545 (2015)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Kordyukov, Y.A.: \(L^p\)-theory of elliptic differential operators on manifolds of bounded geometry. Acta Appl. Math. 23(3), 223–260 (1991)MathSciNetMATHGoogle Scholar
  28. 28.
    Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)MATHGoogle Scholar
  29. 29.
    Lohoué, N., Rychener, T.: Die Resolvente von \(\Delta \) auf symmetrischen Räumen vom nichtkompakten Typ. Comment. Math. Helv. 57(3), 445–468 (1982)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1975)MATHGoogle Scholar
  31. 31.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis, 2nd edn. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980)MATHGoogle Scholar
  32. 32.
    Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36(2), 417–450 (1992)MathSciNetMATHGoogle Scholar
  33. 33.
    Sepanski, M.R.: Compact Lie Groups, vol. 235 of Graduate Texts in Mathematics. Springer, New York (2007)Google Scholar
  34. 34.
    Sturm, K.-T.: On the \(L^p\)-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal. 118(2), 442–453 (1993)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)MATHGoogle Scholar
  36. 36.
    Taylor, M.E.: \(L^p\)-estimates on functions of the Laplace operator. Duke Math. J. 58(3), 773–793 (1989)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Wang, J.: The spectrum of the Laplacian on a manifold of nonnegative Ricci curvature. Math. Res. Lett. 4(4), 473–479 (1997)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Reprint. Graduate Texts in Mathematics, vol. 94, p. IX, 272. Springer, New York (1983)Google Scholar
  39. 39.
    Weber, A.: Heat kernel estimates and \({L}^p\)-spectral theory of locally symmetric spaces. Dissertation (2007). doi:10.5445/KSP/1000005774
  40. 40.
    Werner, D.: Funktionalanalysis, extended edn. Springer, Berlin (2000)Google Scholar
  41. 41.
    Wolf, J.A.: Essential self-adjointness for the Dirac operator and its square. Indiana Univ. Math. J. 22, 611–640 (1972/73)Google Scholar
  42. 42.
    Yosida, K.: Functional Analysis, vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 6th edn. Springer, Berlin (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Mathematisches InstitutUniversität FreiburgFreiburgGermany

Personalised recommendations