Skip to main content
Log in

Limits of elastic models of converging Riemannian manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In non-linear incompatible elasticity, the configurations are maps from a non-Euclidean body manifold into the ambient Euclidean space, \(\mathbb {R}^k\). We prove the \(\Gamma \)-convergence of elastic energies for configurations of a converging sequence, \({\mathcal {M}}_n\rightarrow {\mathcal {M}}\), of body manifolds. This convergence result has several implications: (i) it can be viewed as a general structural stability property of the elastic model. (ii) It applies to certain classes of bodies with defects, and in particular, to the limit of bodies with increasingly dense edge-dislocations. (iii) It applies to approximation of elastic bodies by piecewise-affine manifolds. In the context of continuously-distributed dislocations, it reveals that the torsion field, which has been used traditionally to quantify the density of dislocations, is immaterial in the limiting elastic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aharoni, H., Abraham, Y., Elbaum, R., Sharon, E., Kupferman, R.: Emergence of spontaneous twist and curvature in non-Euclidean rods: Application to erodium plant cells. Phys. Rev. Lett. 108, 238106 (2012)

    Article  Google Scholar 

  2. Armon, S., Efrati, E., Sharon, E., Kupferman, R.: Geometry and mechanics of chiral pod opening. Science 333, 1726–1730 (2011)

    Article  Google Scholar 

  3. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86, 125–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: A new application of the methods of Non-Riemannian geometry. Proc. R. Soc. A 231, 263–273 (1955)

    Article  MathSciNet  Google Scholar 

  5. Bilby, B.A., Smith, E.: Continuous distributions of dislocations. III. Proc. R. Soc. Edin. A 236, 481–505 (1956)

  6. Conti, S., Dolzman, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Rat. Mech. Anal. 217(2), 413–437 (2015)

    Article  MathSciNet  Google Scholar 

  7. Conti, S., Garroni, A., Ortiz, M.: The line-tension approximation as the dilute limit of linear-elastic dislocations. Arch. Rat. Mech. Anal. 218(2), 699–755 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christodoulou, D., Kaelin, I.: On the mechanics of crystalline solids with a continuous distribution of dislocations. Adv. Theor. Math. Phys. 17(2), 399–477 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dal-Maso, G.: An introduction to \(\Gamma \)-convergence, Birkhäuser (1993)

  10. Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57, 762–775 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ivanov, S.: Gromov-Hausdorff convergence and volumes of manifolds. St. Petersburg Math. J. 9(5), 945–959 (1998)

    MathSciNet  Google Scholar 

  13. Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kupferman, R., Maor, C.: Riemannian surfaces with torsion as homogenization limits of locally-euclidean surfaces with dislocation-type singularities. Proc. A RSE (2014)

  15. Kupferman, R., Maor, C.: A Riemannian approach to the membrane limit of non-euclidean elasticity. Comm. Contemp. Math. 16(5), 1350052 (2014)

  16. Kupferman, R., Maor, C.: The emergence of torsion in the continuum limit of distributed dislocations. J. Geom. Mech. 7(3), 361–387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kupferman, R., Maor, C., Rosenthal, R.: Non-metricity in the continuum limit of randomly-distributed point defects (2015). arXiv:1508.02003

  18. Kondo, K.: Geometry of elastic deformation and incompatibility. In: Kondo, K. (ed.) Memoirs of the unifying study of the basic problems in engineering science by means of geometry, vol. 1, pp. 5–17 (1955)

  19. Kröner, E.: Contiuum theory of defects. In: Balian, R., Kleman, M., Poirier, J.P. (eds.) Physics of Defects—Les Houches Summer School Proceedings. North-Holland, Amsterdam (1981)

  20. Kuwae, K., Shioya, T.: Variational convergence over metric spaces. Trans. Am. Math. Soc. 360(1), 35–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kupferman, R., Solomon, J.P.: A Riemannian approach to reduced plate, shell, and rod theories. J. Funct. Anal. 266, 2989–3039 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le-Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. de Math. Pures et Appl. 74, 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Föppl-von Kármán equations for plates with incompatible strains. Proc. R. Soc. A 467, 402–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lewicka, M., Pakzad, M.R.: Scaling laws for non-Euclidean plates and the \(W^{2,2}\) isometric immersions of Riemannian metrics, ESAIM: Control. Optim. Calc. Var. 17, 1158–1173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miri, M., Rivier, N.: Continuum elasticity with topological defects, including dislocations and extra-matter. J. Phys. A Math. Gen. 35, 1727–1739 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moshe, M., Levin, I., Aharoni, H., Kupferman, R., Sharon, E.: Geometry and mechanics of two-dimensional defects in amorphous materials. Proc. Nat. Acad. Sci. USA 112, 10873–10878 (2015)

    Article  MathSciNet  Google Scholar 

  27. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  28. Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Petersen, P.: Riemannian geometry, 2nd edn. Springer, New York (2006)

  30. Reshetnyak, YuG: On the stability of conformal mappings in multidimensional spaces. Sibirskii Matematicheskii Zhurnal 8(1), 91–114 (1967)

    MATH  Google Scholar 

  31. Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. PRE 75, 046211 (2007)

    Article  Google Scholar 

  32. Wang, C.C.: On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Rat. Mech. Anal. 27(1), 33–94 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yavari, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Rat. Mech. Anal. 205(1), 59–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referee for various comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cy Maor.

Additional information

Communicated by J. Ball.

Raz Kupferman is partially supported by the Israel-US Binational Foundation (Grant No. 2010129), by the Israel Science Foundation (Grant No. 661/13) and by a Grant from the Ministry of Science, Technology and Space, Israel and the Russian Foundation for Basic Research, the Russian Federation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupferman, R., Maor, C. Limits of elastic models of converging Riemannian manifolds. Calc. Var. 55, 40 (2016). https://doi.org/10.1007/s00526-016-0979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0979-6

Mathematics Subject Classification

Navigation