Front blocking and propagation in cylinders with varying cross section

  • Henri Berestycki
  • Juliette Bouhours
  • Guillemette Chapuisat
Article

Abstract

In this paper we consider a bistable reaction–diffusion equation in unbounded domains and we investigate geometric conditions under which propagation, possibly partial, takes place in some direction or, on the contrary, there is a blocking phenomenon. We start by proving the well-posedness of the problem. Then we prove that when the domain has a decreasing cross section with respect to the direction of propagation there is complete propagation. Further, we prove that the wave can be blocked as it comes through an abrupt opening. Finally we discuss various general geometrical properties that ensure either partial or complete invasion by 1. In particular, we show that in a domain that is “star-shaped” with respect to an axis, there is complete invasion by 1.

Mathematics Subject Classification

35B08 35B30 35B40 35C07 35K57 92B05 92C20 

References

  1. 1.
    Aitken, P.G., Jing, J., Young, J., Friedman, A., Somjen, G.G.: Spreading depression in human hippocampal tissue in vitro. In: Third IBRO Congr. Montreal Abstr., vol. 329 (1991)Google Scholar
  2. 2.
    Ashman, R., Hull, E.: Essentials of electrocardiography. Macmillan, New York (1945)Google Scholar
  3. 3.
    Back, T., Hirsch, J.G., Szabo, K., Gass, A.: Failure to demonstrate peri-infarct depolarizations by repetitive mr diffusion imaging in acute human stroke. Stroke 31(12), 2901–2906 (2000)CrossRefGoogle Scholar
  4. 4.
    Berestycki, H., Chapuisat, G.: Traveling fronts guided by the environment for reaction-diffusion equations. Netw. Heterog. Media 8(1), 79–114 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Berestycki, H., Hamel, F.: Generalized travelling waves for reaction–diffusion equations. In: Perspectives in nonlinear partial differential equations, vol. 446 of Contemp, pp. 101–123. Math. Amer. Math. Soc., Providence, RI (2007)Google Scholar
  6. 6.
    Berestycki, H., Hamel, F.: Reaction–Diffusion Equations and Propagation Phenomena. Springer (2014) (to appear)Google Scholar
  7. 7.
    Berestycki, H., Hamel, F., Matano, H.: Bistable traveling waves around an obstacle. Commun. Pure Appl. Math. 62(6), 729–788 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Berestycki, H., Lions, P.-L.: Une méthode locale pour l’existence de solutions positives de problèmes semi-linéaires elliptiques dans \({ R}^{N}\). J. Anal. Math. 38, 144–187 (1980)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Bras. Math. (N.S.) 22(1), 1–37 (1991)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bouhours, J.: Robustness of a liouville type theorem in exterior domain. J. Dyn. Differ. Equ. 27(2), 297–306 (2015). doi:10.1007/s10884-014-9368-z MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bowyer, S.M., Tepley, N., Papuashvili, N., Kato, S., Barkley, G.L., Welch, K.M., Okada, Y.C.: Analysis of meg signals of spreading cortical depression with propagation constrained to a rectangular cortical strip. ii. gyrencephalic swine model. Brain Res. 843(1–2), 79–86 (1999)CrossRefGoogle Scholar
  12. 12.
    Casten, R.G., Holland, C.J.: Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27(2), 266–273 (1978)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chapuisat, G.: Existence and nonexistence of curved front solution of a biological equation. J. Differ. Equ. 236(1), 237–279 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chapuisat, G., Grenier, E.: Existence and nonexistence of traveling wave solutions for a bistable reaction–diffusion equation in an infinite cylinder whose diameter is suddenly increased. Commun. Partial Differ. Equ. 30(10–12), 1805–1816 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cranefield, P.F.: The Conduction of the Cardiac Impulse: The Slow Response and Cardiac Arrhythmias, volume chap 2 and 5 of New York: Futura (1975)Google Scholar
  16. 16.
    De Keyser, J., Sulter, G., Luiten, P.G.: Clinical trials with neuroprotective drugs in acute ischaemic stroke: are we doing the right thing? Trends Neurosci. 22(12), 535–540 (1999)CrossRefGoogle Scholar
  17. 17.
    Dronne, M.A., Descombes, S., Grenier, E., Gilquin, H.: Examples of the influence of the geometry on the propagation of progressive waves. Math. Comput. Model. 49(11–12), 2138–2144 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\bf R}^{n}\). In: Mathematical analysis and applications, Part A, vol. 7 of Adv. in Math. Suppl. Stud., pp. 369–402. Academic Press, New York (1981)Google Scholar
  19. 19.
    Gorji, A., Scheller, D., Straub, H., Tegtmeier, F., Köhling, R., Höhling, J., Tuxhorn, I., Ebner, A., Wolf, P., Werner, H., Panneck, F.O., Speckmann, E.J.: Spreading depression in human neocortical slices. Brain Res. 906(1–2), 74–83 (2001)CrossRefGoogle Scholar
  20. 20.
    Grenier, E., Dronne, M.A., Descombes, S., Gilquin, H., Jaillard, A., Hommel, M., Boissel, J.-P.: A numerical study of the blocking of migraine by rolando sulcus. Prog. Biophys. Mol. Biol. 97(1), 54–59 (2008)CrossRefGoogle Scholar
  21. 21.
    Grindrod, P., Lewis, M.A.: One-way blocks in cardiac tissue: a mechanism for propagation failure in purkinje fibres. Bull. Math. Biol. 53(6), 881–899 (1991)CrossRefMATHGoogle Scholar
  22. 22.
    Hadjikhani, N., Sanchez del Rio, M., Wu, O., Schwartz, D., Bakker, D., Fischl, B., Kwong, K.K., Cutrer, F.M., Rosen, B.R., Tootell, R.B., Sorensen, A.G., Moskowitz, M.A.: Mechanisms of migraine aura revealed by functional mri in human visual cortex. Proc. Natl. Acad. Sci. USA. 98, 4687–4692 (2001)CrossRefGoogle Scholar
  23. 23.
    Joyner, R.W.: Mechanisms of unidirectional blocks in cardiac tissues. Biophys. J. 35, 113–125 (1981)CrossRefGoogle Scholar
  24. 24.
    Lauritzen, M.: Pathophysiology of the migraine aura. The spreading depression theory. Brain 117, 199–210 (1994)CrossRefGoogle Scholar
  25. 25.
    Lauritzen, M.: Cortical spreading depression in migraine. Cephalalgia 21, 757–760 (2001)CrossRefGoogle Scholar
  26. 26.
    Lauritzen, M., Dreier, J.P., Fabricius, M., Hartings, J.A., Graf, R., Strong, A.J.: Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011)CrossRefGoogle Scholar
  27. 27.
    Leao, A.A.P.: Pial circulation and spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7(6), 391–396 (1944)Google Scholar
  28. 28.
    Lou, B., Matano, H., Nakamura, K.-I.: Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed. J. Differ. Equ. 255(10), 3357–3411 (2013)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Matano, H., Nakamura, K.-I., Lou, B.: Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Netw. Heterog. Media 1(4), 537–568 (2006)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Mayevsky, A., Doron, A., Manor, T., Meilin, S., Zarchin, N., Ouaknine, G.E.: Cortical spreading depression recorded from the human brain using a multiparmetric monitoring system. Brain Res. 740(1–2), 268–274 (1996)CrossRefGoogle Scholar
  32. 32.
    McLachlan, R.S., Girvin, J.P.: Spreading depression of leao in rodent and human cortex. Brain Res. 666(1), 133–136 (1994)CrossRefGoogle Scholar
  33. 33.
    Mies, G., Iilima, T., Hossman, K.A.: Correlation between peri-infarct dc shifts and ischeamic neuronal damage in rat. Neuroreport 4(6), 709–711 (1993)CrossRefGoogle Scholar
  34. 34.
    Miller, R.N.: A simple model of delay, block and one way conduction in Purkinje fibers. J. Math. Biol. 7(4), 385–398 (1979)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Nedergaard, M., Cooper, A.J., Goldman, S.A.: Gap junctions are required for the propagation of spreading depression. J. Neurobiol. 28(4), 433–444 (1995)CrossRefGoogle Scholar
  36. 36.
    Pocci, C., Moussa, A., Hubert, F., Chapuisat, G.: Numerical study of the stopping of aura during migraine. In: CEMRACS 2009: Mathematical modelling in medicine, vol. 30 of ESAIM Proc., pp. 44–52. EDP Sci., Les Ulis (2010)Google Scholar
  37. 37.
    Rabinowitz, P.H.: Pairs of positive solutions of nonlinear elliptic partial differential equations. Indiana Univ. Math. J. 23, 173–186 (1973/74)Google Scholar
  38. 38.
    Roques, L., Roques, A., Berestycki, H., Kretzschmar, A.: A population facing climate change: joint influences of allee effects and environmental boundary geometry. Popul. Ecol. 50, 215–225 (2008). doi:10.1007/s10144-007-0073-1 CrossRefGoogle Scholar
  39. 39.
    Strong, A.J., Fabricius, M., Boutelle, M.G., Hibbins, S.J., Hopwood, S.E., Jones, R., Parkin, M.C., Lauritzen, M.: Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33(12), 2738–2743 (2002)CrossRefGoogle Scholar
  40. 40.
    Šramka, M., Brozek, G., Buresš, J., Nádvorník, P.: Functional ablation by spreading depression: possible use in human stereptactic surgery. Appl. Neurophysiol. 40, 48–61 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Henri Berestycki
    • 1
  • Juliette Bouhours
    • 1
    • 2
  • Guillemette Chapuisat
    • 1
    • 3
  1. 1.Ecole des Hautes Etudes en Sciences SocialesPSL Research University, CNRS, Centre d’Analyse et Mathématique SocialesParisFrance
  2. 2.Sorbonne Universités UPMC, Univ Paris 06, CNRS Laboratoire Jacques-Louis LionsParisFrance
  3. 3.Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématique de Marseille, UMR 7373MarseilleFrance

Personalised recommendations