Skip to main content

Advertisement

Log in

The Lip-lip equality is stable under blow-up

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show that at generic points blow-ups/tangents of differentiability spaces are still differentiability spaces; this implies that an analytic condition introduced by Keith as an inequality (and later proved to actually be an equality) passes to tangents. As an application, we characterize the p-weak gradient on iterated blow-ups of differentiability spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Colombo, M., Di Marino, S.: Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope. Adv. Stud. Pure Math. 67, 1–58 (2012)

    Google Scholar 

  2. Alberti, G., Csörnyei, M., Preiss, D.: Structure of null sets in the plane and applications. In: European Congress of Mathematics, pp. 3–22. Eur. Math. Soc., Zürich (2005)

  3. Alberti, G., Csörnyei, M., Preiss, D.: Differentiability of Lipschitz functions, structure of null sets, and other problems. In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 1379–1394. Hindustan Book Agency, New Delhi (2010)

  4. Ambrosio, L., Di Marino, S.: Equivalent definitions of \(BV\) space and of total variation on metric measure spaces. J. Funct. Anal. 266(7), 4150–4188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29(3), 969–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alberti, G.: Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A 123(2), 239–274 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bate, D.: Structure of measures in Lipschitz differentiability spaces (v2). ArXiv e-prints (2012)

  8. Bate, D.: Structure of measures in Lipschitz differentiability spaces. J. Am. Math. Soc. 28(2), 421–482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bate, D., Li, S.: The geometry of Radon-Nikodym Lipschitz differentiability spaces. ArXiv e-prints (2015)

  10. Bate, D., Speight, G.: Differentiability, porosity and doubling in metric measure spaces. Proc. Am. Math. Soc. 141(3), 971–985 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christ, M.: A \(T(b)\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61(2), 601–628 (1990)

    MathSciNet  Google Scholar 

  13. Cheeger, J., Kleiner, B.: Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property. Geom. Funct. Anal. 19(4), 1017–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheeger, J., Kleiner, B.: Differentiating maps into \(L^1\), and the geometry of BV functions. Ann. Math. 171(2), 1347–1385 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheeger, J., Kleiner, B.: Metric differentiation, monotonicity and maps to \(L^1\). Invent. Math. 182(2), 335–370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheeger, J., Kleiner, B.: Realization of metric spaces as inverse limits, and bilipschitz embedding in \(L_1\). Geom. Funct. Anal. 23(1), 96–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheeger, J., Kleiner, B., Naor, A.: Compression bounds for Lipschitz maps from the Heisenberg group to \(L_1\). Acta Math. 207(2), 291–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheeger, J., Kleiner, B., Schioppa, A.: Infinitesimal structure of differentiability spaces, and metric differentiation. ArXiv e-prints (2015)

  19. Colding, T.H., Minicozzi II, W.P.: Harmonic functions on manifolds. Ann. Math. 146(3), 725–747 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Marino, S., Speight, G.: The \(p\)-Weak Gradient Depends on \(p\). Proc. Am. Math. Soc. 143(11), 5239–5252 (2015)

    Article  Google Scholar 

  21. Gigli, N., Mondino, A., Rajala, T.: Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below. J. Reine Angew. Math. 705, 233–244 (2015)

    MathSciNet  Google Scholar 

  22. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126(1), 1–33 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kechris, A.S.: Classical Descriptive Set Theory, vol.156 of Graduate Texts in Mathematics. Springer-Verlag, New York (1995)

    Book  Google Scholar 

  25. Keith, S.J.: A differentiable structure for metric measure spaces. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), University of Michigan (2002)

  26. Keith, S.: Modulus and the Poincaré inequality on metric measure spaces. Math. Z. 245(2), 255–292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Keith, S.: A differentiable structure for metric measure spaces. Adv. Math. 183(2), 271–315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131(1), 1–17 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Kleiner, B., Mackay, J., Differentiable structures on metric measure spaces: a Primer. ArXiv e-prints. To appear in Ann. Sc. Norm. Super. Pisa Cl, Sci (2011)

  30. Le Donne, E.: Metric spaces with unique tangents. Ann. Acad. Sci. Fenn. Math. 36(2), 683–694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Preiss, D.: Geometry of measures in \({\bf R}^n\): distribution, rectifiability, and densities. Ann. Math. 125(3), 537–643 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schioppa, A.: Derivations and Alberti Representations. ArXiv e-prints (2013)

  33. Schioppa, A.: Metric Currents and Alberti Representations. ArXiv e-prints (2014)

  34. Schioppa, A.: Derivations and Alberti Representations. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), New York University (2014)

  35. Schioppa, A.: On the relationship between derivations and measurable differentiable structures. Ann. Acad. Sci. Fenn. Math. 39(1), 275–304 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schioppa, A.: The Poincaré Inequality Does Not Improve with Blow-up. ArXiv e-prints (2015)

  37. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16(2), 243–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weaver, N.: Lipschitz algebras and derivations. II. Exterior differentiation. J. Funct. Anal. 178(1), 64–112 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work would have not been possible without the many conversations that I had with David Preiss, who generously invited me to visit the University of Warwick; I also wish to thank the people in the analysis group, in particular Daniel Seco, for the hospitality I received. I also thank the anonymous referee for reading the manuscript very carefully and for pointing out an issue with the way measures were normalized in the first version of the preprint.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Schioppa.

Additional information

Communicated by L. Ambrosio.

The author was supported by the “ETH Zurich Postdoctoral Fellowship Program and the Marie Curie Actions for People COFUND Program” and the European Research Council Grant no. 291497.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schioppa, A. The Lip-lip equality is stable under blow-up. Calc. Var. 55, 22 (2016). https://doi.org/10.1007/s00526-016-0957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0957-z

Mathematics Subject Classification

Navigation