Skip to main content
Log in

\(C^{2,\alpha }\) estimates for nonlinear elliptic equations of twisted type

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove a priori interior \(C^{2,\alpha }\) estimates for solutions of fully nonlinear elliptic equations of twisted type. For example, our estimates apply to equations of the type convex + concave. These results are particularly well suited to equations arising from elliptic regularization. As application, we obtain a new proof of an estimate of Streets and Warren on the twisted real Monge–Ampère equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bian, B., Guan, P.: A microscopic convexity principle for nonlinear partial differential equations. Invent. Math. 177(2), 307–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations, vol. 43. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1995)

  3. Caffarelli, L., Cabré, X.: Interior \(C^{2,\alpha }\) regularity theory for a class of nonconvex fully nonlinear elliptic equations. J. Math. Pures Appl. 9(5), 573–612 (2003)

    Google Scholar 

  4. Caffarelli, L., Yuan, Y.: A priori estimates for solutions of fully nonlinear equations with convex level sets. Indiana Univ. Math. J. 49(2), 681–695 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Collins, T.C., Székelyhidi, G.: Convergence of the J-flow on toric manifolds. J. Differ. Geom. To appear

  6. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MATH  Google Scholar 

  7. Fu, J., Yau, S.-T.: The theory of superstring with flux on non-Kähler manifolds and the complex Monge–Ampère equation. J. Differ. Geom. 78, 369–428 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in mathematics. Springer, Berlin (2001)

  9. Han, Q., Lin, F.: Elliptic partial differential equations, 2nd edn. Courant Lecture Notes in Mathematics 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2011)

  10. Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations. Izv. Akad. Nak. SSSR Ser. Mat. 46, 487–523 (1982). English transl. in Math. USSR Izv. 20 (1983), 459–492

    MATH  Google Scholar 

  11. Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nak. SSSR Ser. Mat. 47, 75–108 (1983). English transl. in Math. USSR Izv. 22 (1984), 67–97

    Google Scholar 

  12. Krylov, N.V., Safonov, N.V.: A certain property of the solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44, 161–175 (1980). In Russian. English translation in Math. USSR Izv. 16 (1981), 151–164

    MathSciNet  MATH  Google Scholar 

  13. Nadirashvili, N., Vlăduţ, S.: Nonclassical solutions of fully nonlinear elliptic equations. Geom. Funct. Anal. 17, 1283–1296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nirenberg, L.: On nonlinear elliptic partial differential equations and Hölder continuity. Commun. Pure. Appl. Math. 6, 103–156 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  15. Savin, O.: Small perturbation solutions for elliptic equations. Commun. Partial Differ. Equ. 32(4–6), 557–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Streets, J.: Pluriclosed flow on generalized Kähler manifolds with split tangent bundle, preprint, arXiv:1405.0727

  17. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 16, 3101–3133 (2010)

    MathSciNet  Google Scholar 

  18. Streets, J., Tian, G.: Regularity results for the pluriclosed flow. Geom. Top. 17, 2389–2429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Streets, J., Tian, G.: Generalized Kähler geometry and the pluriclosed flow. Nucl. Phys. B 858(2), 366–376 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Streets, J., Warren, M.: Evans–Krylov estimates for a nonconvex Monge–Ampère equation, Math. Ann., to appear

  21. Tosatti, V., Wang, Y., Weinkove, B., Yang, X.: \(C^{2,\alpha }\) estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. Partial Differ. Equ. 54(1), 431–453 (2015)

  22. Wang, Y.: On the \(C^{2,\alpha }\) regularity of the complex Monge–Ampère equation. Math. Res. Lett. 19(4), 939–946 (2012)

  23. Yuan, Y.: A priori estimates for solutions of fully nonlinear special Lagrangian equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 261–270 (2001)

    Article  MATH  Google Scholar 

  24. Yuan, Y.: Global solutions to special Lagrangian equations. Proc. Am. Math. Soc. 134(5), 1355–1358 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank G. Székelyhidi, V. Tosatti and C. Mooney for several helpful conversations. I am grateful to D. H. Phong and S.-T. Yau for their encouragement and support. I am particularly grateful to the referee for several suggestions which helped to improve and clarify the content of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan C. Collins.

Additional information

Communicated by O. Savin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, T.C. \(C^{2,\alpha }\) estimates for nonlinear elliptic equations of twisted type. Calc. Var. 55, 6 (2016). https://doi.org/10.1007/s00526-015-0950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-015-0950-y

Mathematics Subject Classification

Navigation