Skip to main content
Log in

Extremal and sign-changing solutions of supercritical logistic-type equations in \(\mathbb {R}^N\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove the existence of constant-sign and sign-changing (weak) solutions of the following logistic-type equation in \(\mathbb {R}^N\), \(N\ge 3\),

$$\begin{aligned} u\in \mathcal {D}^{1,2}(\mathbb {R}^N):-\Delta u = \lambda a(x) u - b(x) g(u). \end{aligned}$$

The problem under consideration is treated in a rather weak setting regarding the regularity assumptions on the coefficients ab and the growth condition on the nonlinear function g on the one hand, as well as the solution space \(\mathcal {D}^{1,2}(\mathbb {R}^N)\) on the other hand. The nonlinearity g we are dealing with may have supercritical growth which does not allow for an immediate variational approach and which makes the difference to the existing literature. Instead we combine truncation and differential inequality techniques with variational methods and rather involved topological tools to achieve our goal. A sub-supersolution principle for the nonlinear equation in question has been developed as a tool to prove the existence of minimal positive and maximal negative solutions which are used to prove the existence of sign-changing solutions via truncation and variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto, W., Odiobala, P.O.: Nonpositone elliptic problems in \(R^n\). Proc. Am. Math. Soc. 123(2), 533–541 (1995)

    MATH  MathSciNet  Google Scholar 

  2. Bartsch, T., Liu, Z., Weth, T.: Sign changing solutions of Superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29(1/2), 25–42 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Bartsch, T., Wang, Z.Q., Zhang, Z.: On the Fucik point spectrum for Schrödinger operators on \({\mathbb{R}}^N\). J. Fixed Point Theory Appl. 5, 3005–3017 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. 100, 75–83 (2013)

    Article  MATH  Google Scholar 

  5. Carl, S., Perera, K.: Sign-changing and multiple solutions for the p-Laplacian. Abstr. Appl. Anal. 7(12), 613–625 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carl, S., Motreanu, D.: Constant-sign and sign-changing solutions for nonlinear eigenvalue problems. Nonlinear Anal. 68, 2668–2676 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth variational problems and their inequalities. Comparison principles and applications. In: Springer Monographs in Mathematics. Springer, New York (2007)

  8. Cingolani, S., Gamez, J.L.: Positive solutions of a semilinear elliptic equation on \({\mathbb{R}}^N\) with indefinite nonlinearity. Adv. Differ. Equ. 1(5), 773–791 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Costa, D.G., Drabek, P., Tehrani, H.: Positive solutions to semilinear elliptic equations with logistic type nonlinearities and constant yield harvesting in \({\mathbb{R}}^N\). Commun. Partial Differ. Equ. 33(7–9), 1597–1610 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Costa, D.G., Tehrani, H., Thomas, R.: Estimates at infinity for positive solutions to a class of p-Laplacian problems in \({\mathbb{R}}^N\). J. Math. Anal. Appl. 391, 170–182 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. DiBenedetto, E.: \(C^{1,\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dong, W., Liu, L.: Uniqueness and existence of positive solutions for degenerate logistic type elliptic equations on \({\mathbb{R}}^N\). Nonlinear Anal. 67, 1226–1235 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Du, Y., Ma, L.: Positive solutions of an elliptic partial differential equation on \({\mathbb{R}}^N\). J. Math. Anal. Appl. 271, 409–425 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  15. Girao, P., Tehrani, H.: Positive solutions to logistic type equations with harvesting. J. Differ. Equ. 247, 574–595 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, Z., Wang, Z.Q., Weth, T.: Multiple solutions of nonlinear Schrödinger equations via flow invariance and Morse theory. Proc. R. Soc. Edinb. 136A, 945–969 (2006)

    Article  MathSciNet  Google Scholar 

  18. Motreanu, D., Motreanu, V.V., Papageorgiou, N.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014)

    Book  MATH  Google Scholar 

  19. Royden, H.L., Fitzpatrick, P.M.: Real Analysis, 4th edn. Prentice Hall, Englewood Cliffs (2010)

    MATH  Google Scholar 

  20. Shen, Z., Han, Z.: Multiple solutions for a class of SchrödingerPoisson system with indefinite nonlinearity. J. Math. Anal. Appl. 426, 839–854 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Struwe, M.: Variational Methods. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  22. Trudinger, N.S.: On Harnack type inequalities and their applications to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu, Y., Huang, Y., Liu, Z.: Sign-changing solutions for Schrödinger equations with vanishing and sign-changing potentials. Acta Math. Sci. Ser. B Engl. Ed. 34(3), 691–702 (2014)

    Article  MathSciNet  Google Scholar 

  24. Zou, W.: Sign-Changing Critical Point Theory. Springer, New York (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the reviewer’s careful reading of the manuscript and useful comments that helped to improve its content and readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Costa.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carl, S., Costa, D.G. & Tehrani, H. Extremal and sign-changing solutions of supercritical logistic-type equations in \(\mathbb {R}^N\) . Calc. Var. 54, 4143–4164 (2015). https://doi.org/10.1007/s00526-015-0934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0934-y

Mathematics Subject Classification

Navigation