Skip to main content

Advertisement

Log in

Quantitative isoperimetric inequalities in \(\mathbb {H}^n\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In the Heisenberg group \(\mathbb {H}^{n}\), \(n\ge 1\), we prove quantitative isoperimetric inequalities for Pansu’s spheres, that are known to be isoperimetric under various assumptions. The inequalities are shown for suitably restricted classes of competing sets and the proof relies on the construction of sub-calibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322(2), 515–557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barchiesi, M., Brancolini, A., Julin, V.: Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality (2014) (Preprint). arXiv:1409.2106

  3. Bögelein, V., Duzaar, F., Fusco, N.: A quantitative isoperimetric inequality on the sphere (2013). (Preprint)

  4. Bögelein, V., Duzaar, F., Scheven, C.: A sharp quantitative isoperimetric inequality in hyperbolic \(n\)-space (2014). (Preprint)

  5. Capogna, L., Danielli, D., Pauls, S.D., Tyson, J.: An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem. In: Bass, H., Lu, J.-H., Oesterlé, J., Tschinkel, Y. (eds.) Progress in Mathematics, vol. 259, pp. xvi+223. Birkhäuser, Basel (2007)

  6. Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: On the isoperimetric deficit in Gauss space. Am. J. Math. 133(1), 131–186 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cicalese, M., Leonardi, G.P.: A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206(4), 617–643 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Philippis, G., Maggi, F.: Sharp stability inequalities for the Plateau problem. J. Differ. Geom. 96(3), 399–456 (2014)

    MATH  Google Scholar 

  9. De Philippis, G., Paolini, E.: A short proof of the minimality of Simons cone. Rend. Sem. Mat. Univ. Padova 121, 233–241 (2009)

    Article  MATH  Google Scholar 

  10. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Franceschi, V., Monti, R.: Isoperimetric problem in \(H\)-type groups and Grushin spaces (2014) (Preprint). arXiv:1411.5175

  12. Franchi, B., Serapioni, R., Serra Cassano, F.: Meyers-Serrin type theorems and relaxation of variational integrals depending vector fields. Houst. J. Math. 22, 859–889 (1996)

  13. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168(3), 941–980 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leonardi, G.P., Masnou, S.: On the isoperimetric problem in the Heisenberg group \(\mathbb{H}^n\). Ann. Mat. Pura Appl. 184(4), 533–553 (2005)

  15. Leonardi, G.P., Rigot, S.: Isoperimetric sets on Carnot groups. Houst. J. Math. 29, 609–637 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Monti, R.: Brunn–Minkowski and isoperimetric inequality in the Heisenberg group. Ann. Acad. Sci. Fenn. Math. 28, 99–109 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Monti, R.: Heisenberg isoperimetric problem. The axial case. Adv. Calc. Var. 1(1), 93–121 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Monti, R.: Isoperimetric problem and minimal surfaces in the Heisenberg group. In: Ambrosio, L. (ed.) Lecture Notes of the ERC School Geometric Measure Theory and Real Analysis, CRM Series, vol. 17, pp. 57–130. Edizioni SNS Pisa, Pisa (2015)

  19. Monti, R., Morbidelli, D.: Isoperimetric inequality in the Grushin plane. J. Geom. Anal. 14(2), 355–368 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Monti, R., Rickly, M.: Convex isoperimetric sets in the Heisenberg group. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 8(2), 391–415 (2009)

  21. Pansu, P.: An isoperimetric inequality on the Heisenberg group. In: Conference on Differential Geometry on Homogeneous Spaces (Turin, 1983), pp. 159–174. Rend. Sem. Mat. Univ. Politec. Torino (1983). (Special Issue)

  22. Ritoré, M.: A proof by calibration of an isoperimetric inequality in the Heisenberg group \(\mathbb{H}^n\). Calc. Var. Partial Differ. Equ. 44(1–2), 47–60 (2012)

    Article  MATH  Google Scholar 

  23. Ritoré, M., Rosales, C.: Area-stationary surfaces in the Heisenberg group \(\mathbb{H}^1\). Adv. Math. 219(2), 633–671 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Monti.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franceschi, V., Leonardi, G.P. & Monti, R. Quantitative isoperimetric inequalities in \(\mathbb {H}^n\) . Calc. Var. 54, 3229–3239 (2015). https://doi.org/10.1007/s00526-015-0899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0899-x

Mathematics Subject Classification

Navigation