Abstract
Lorentz and Lorentz–Morrey estimates are obtained for gradients of very weak solutions to quasilinear equations of the form
where \(\text {div}\,\mathcal {A}(x, \nabla u)\) is modelled after the p-Laplacian, \(p>1\). The estimates are global over bounded domains that satisfy a mild exterior uniform thickness condition that involves the p-capacity. The vector field datum \(\mathbf{f}\) is allowed to have low degrees of integrability and thus solutions may not have finite \(L^p\) energy. A higher integrability result at the boundary of the ground domain is also obtained for infinite energy solutions to the associated homogeneous equations.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
- 1.
Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, vol. 314. Springer, Berlin (1996)
- 2.
Ancona, A.: On strong barriers and an inequality of Hardy for domains in \(R^n\). J. Lond. Math. Soc. 34, 274–290 (1986)
- 3.
Byun, S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57, 1283–1310 (2004)
- 4.
Byun, S., Wang, L.: Quasilinear elliptic equations with BMO coefficients in Lipschitz domains. Trans. Am. Math. Soc. 359, 5899–5913 (2007)
- 5.
Byun, S., Wang, L., Zhou, S.: Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J. Funct. Anal. 250, 167–196 (2007)
- 6.
Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, No. 43, American Mathematical Society, Providence (1995)
- 7.
Caffarelli, L., Peral, I.: On \(W^{1,\, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51, 1–21 (1998)
- 8.
Duzaar, F., Mingione, G.: Gradient estimates via linear and nonlinear potentials. J. Funt. Anal. 259, 2961–2998 (2010)
- 9.
Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133, 1093–1149 (2011)
- 10.
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)
- 11.
Fefferman, C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)
- 12.
Gehring, F.W.: The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)
- 13.
Giachetti, D., Leonetti, F., Schianchi, R.: On the regularity of very weak minima. Proc. R. Soc. Edinb. Sect. A 126, 287–296 (1996)
- 14.
Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Sudies 105, Princeton University Press, Princeton (1983)
- 15.
Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge (2003)
- 16.
Hajlasz, P.: Pointwise Hardy inequalities. Proc. Am. Math. Soc. 127, 417–423 (1999)
- 17.
Han, Q., Lin, F.: Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, 2nd edn, vol. 1, pp. x+147 Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence (2011)
- 18.
Hedberg, L.I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)
- 19.
Heinonen, J., Kilpeläinen, T.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)
- 20.
Iwaniec, T.: Projections onto gradient fields and \(L^{p}\)-estimates for degenerated elliptic operators. Stud. Math. 75, 293–312 (1983)
- 21.
Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)
- 22.
Kinnunen, J., Zhou, S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equ. 24, 2043–2068 (1999)
- 23.
Kinnunen, J., Zhou, S.: A boundary estimate for nonlinear equations with discontinuous coefficients. Differ. Integr. Equ. 14, 475–492 (2001)
- 24.
Jerison, D., Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)
- 25.
Kilpeläinen, T., Koskela, P.: Global integrability of the gradients of solutions to partial differential equations. Nonlinear Anal. 23, 899–909 (1994)
- 26.
Korte, R., Lehrbäck, J., Tuominen, H.: The equivalence between pointwise Hardy inequalities and uniform fatness. Math. Ann. 351, 711–731 (2011)
- 27.
Kuusi, T., Mingione, G.: Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207, 215–246 (2013)
- 28.
Lewis, J.L.: Uniformly fat sets. Trans. Am. Math. Soc. 308, 177–196 (1988)
- 29.
Lewis, J.L.: On very weak solutions of certain elliptic systems. Commun. Partial Differ. Equ. 18, 1515–1537 (1993)
- 30.
Maz’ya, V.G.: Sobolev Spaces. Springer Series in Soviet Mathematics, Springer, Berlin (1985)
- 31.
Mengesha, T., Phuc, N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250, 1485–2507 (2011)
- 32.
Mengesha, T., Phuc, N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203, 189–216 (2012)
- 33.
Mengesha, T., Phuc, N.C.: Quasilinear Riccati type equations with distributional data in Morrey space framework (submitted for publication). https://www.mittag-leffler.se/preprints/list.php?program_code=1314f
- 34.
Mikkonen, P.: On the Wolff potential and quasilinear elliptic equations involving measures. Dissertation. Ann. Acad. Sci. Fenn. Math. Diss. 104, 1–71 (1996)
- 35.
Mingione, G.: Towards a non-linear Calderón–Zygmund theory. Quad. Mat. 23, 371–457 (2008)
- 36.
Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346, 571–627 (2010)
- 37.
Phuc, N.C.: Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. 10(5), 1–17 (2011)
- 38.
Phuc, N.C.: On Calderón–Zygmund theory for \(p\)- and \({\cal A}\)-superharmonic functions. Calc. Var. Partial Differ. Equ. 46, 165–181 (2013)
- 39.
Phuc, N.C.: Global integral gradient bounds for quasilinear equations below or near the natural exponent. Ark. Mat. 52, 329–354 (2014)
- 40.
Phuc, N.C.: Morrey global bounds and quasilinear Riccati type equations below the natural exponent. J. Math. Pures Appl. 102(9), 99–123 (2014)
- 41.
Sohr, H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)
- 42.
Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Academic Press, Orlando (1986)
- 43.
Zhong, X.: On nonhomogeneous quasilinear elliptic equations. Dissertation. Ann. Acad. Sci. Fenn. Math. Diss. 117 (1998)
- 44.
Ziemer, W.P.: Weakly Differentiable Functions, Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)
Author information
Affiliations
Corresponding author
Additional information
Communicated by L. Caffarelli.
Rights and permissions
About this article
Cite this article
Adimurthi, K., Phuc, N.C. Global Lorentz and Lorentz–Morrey estimates below the natural exponent for quasilinear equations. Calc. Var. 54, 3107–3139 (2015). https://doi.org/10.1007/s00526-015-0895-1
Received:
Accepted:
Published:
Issue Date:
Mathematics Subject Classification
- 35J92
- 35B65
- 42B20