Abstract
In this paper, we study the existence of multiple ground state solutions for a class of parametric fractional Schrödinger equations whose simplest prototype is
where \(n>2, (-\Delta )^{s}\) stands for the fractional Laplace operator of order \(s\in (0,1)\), and \(\lambda \) is a positive real parameter. The nonlinear term f is assumed to have a superlinear behaviour at the origin and a sublinear decay at infinity. By using variational methods, we establish the existence of a suitable range of positive eigenvalues for which the problem admits at least two nontrivial solutions in a suitable weighted fractional Sobolev space.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Alberti, G., Bouchitté, G., Seppecher, P.: Phase transition with the line-tension effect. Arch. Ration. Mech. Anal. 144, 1–46 (1998)
Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\). J. Differ Equ 255, 2340–2362 (2013)
Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ Equ 252, 6133–6162 (2012)
Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems in \(\mathbb{R}^N,\) Comm. Partial Differ Equ 20, 1725–1741 (1995)
Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Comm. Contemp. Math. 4, 549–569 (2001)
Bartsch, T., Liu, Z., Weth, T.: Sign-changing solutions of superlinear Schrödinger equations. Comm. Partial Differ Equ 29, 25–42 (2004)
Bertoin, J.: Processes, cambridge tracts in math, vol. 121. Cambridge Univ. Press, Cambridge (1996)
Brézis, H.: Analyse fonctionelle. Théorie et Applications, Masson (1983)
Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)
Caffarelli, L., Roquejoffre, J.-M., Sire, Y.: Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. JEMS 12, 1151–1179 (2010)
Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171, 425–461 (2008)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ Equ 32, 1245–1260 (2007)
Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, 597–638 (2009)
Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200, 59–88 (2011)
Capella, A.: Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains. Comm. Pure Appl. Anal. 10, 1645–1662 (2011)
Cont, R., Tankov, P.: Financial modelling with jump processes. Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton (2004)
Coti Zelati, V., Nolasco, M.: Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis., Mat. Nat. Rend. Lincei Mat. Appl 22, 51–72 (2011)
Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54, 061504 (2013)
Cheng, X.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507 (2012)
Ciarlet, P.G.: Linear and nonlinear functional analysis with applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2013)
Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger-type problem involving the fractional Laplacian. Le Matematiche 68, 201–216 (2013)
Dipierro, S., Pinamonti, A.: A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian. J. Differ Equ 255, 85–119 (2013)
Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)
Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics (2012)
Furtado, M.F., Maia, L.A., Silva, E.A.B.: On a double resonant problem in \(\mathbb{R}^N\). Differ Integral Equ 15, 1335–1344 (2002)
Frank, R.L., Lenzmann, E.: Uniqueness and nondegeneracy of ground states for \((-\Delta )^{s}Q+Q-Q^{\alpha +1}=0\), to appear in Annals of Mathematics
Gazzola, F., Rădulescu, V.: A nonsmooth critical point theory approach to some nonlinear elliptic equations in \(\mathbb{R}^N\). Differ Integral Equ 13, 47–60 (2000)
Ghergu, M., Rădulescu, V.: Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics. Springer Monographs in Mathematics, Springer Verlag, Heidelberg (2012)
Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Comm. Math. Phys. 337, 1317–1368 (2015)
Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8, 57–114 (2015)
Kristály, A.: A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity. Electron. J. Differ Equ 42, 1–11 (2007)
Kurihura, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Japan 50, 3262–3267 (1981)
Landkof, N.S.: Osnovy sovremennoi teorii potentsiala. Nauka, Moscow (1966)
Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)
Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)
Molica Bisci, G.: Fractional equations with bounded primitive. Appl. Math. Lett. 27, 53–58 (2014)
Molica Bisci, G.: Sequences of weak solutions for fractional equations. Math. Res. Lett. 21, 1–13 (2014)
Molica Bisci, G., Pansera, B.A.: Three weak solutions for nonlocal fractional equations. Adv Nonlinear Stud. 14, 591–601 (2014)
Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational methods for nonlocal fractional problems. Cambridge University Press, Cambridge (2015)
Molica Bisci, G., Servadei, R.: A bifurcation result for nonlocal fractional equations. Anal. Appl. 13, 371–394 (2015)
Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \(\mathbb{R}^n\) involving nonlocal operators. Rev. Mat. Iberoam
Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ Equ 257, 1529–1566 (2014)
Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)
Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Reg. Conf. Ser. Math., Amer. Math. Soc. Providence (1986)
Ricceri, B.: On a three critical points theorem. Archiv der Mathematik Basel 75, 220–226 (2000)
Ricceri, B.: Existence of three solutions for a class of elliptic eigenvalue problems. Math Comput Modell 32, 1485–1494 (2000)
Ricceri, B.: A further three critical points theorem. Nonlinear Anal. 71, 4151–4157 (2009)
Secchi, S.: Ground state solutions for nonlinear fractional Schröinger equations in \(\mathbb{R}^N\). J. Math. Phys. 54, 031501 (2013)
Secchi, S.: Perturbation results for some nonlinear equations involving fractional operators. Differ. Equ. Appl. 5, 221–236 (2013)
Secchi, S.: On fractional Schrödinger equations in \(\mathbb{R}^N\) without the Ambrosetti-Rabinowitz condition. Topol. Methods Nonlinear Anal. (in press)
Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)
Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)
Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator, Ph.D. Thesis, The University of Texas at Austin, p. 95, ISBN: 978-0542-25310-2 (2005)
Silvestre, L.: On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion. Adv. Math. 226, 2020–2039 (2011)
Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)
Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in \(\mathbb{R}^N\). Nonlinear Anal Real World Appl 21, 76–86 (2015)
Tan, J.: The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ Equ 36, 21–41 (2011)
Willem, M.: Minimax theorems. Birkhäuser, Boston (1995)
Acknowledgments
The manuscript was realized within the auspices of the INdAM–GNAMPA Project 2015 titled Modelli ed equazioni non-locali di tipo frazionario. V. Rădulescu acknowledges the support through Grant CNCS PCE-47/2011.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Rabinowitz.
Rights and permissions
About this article
Cite this article
Bisci, G.M., Rădulescu, V.D. Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. 54, 2985–3008 (2015). https://doi.org/10.1007/s00526-015-0891-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00526-015-0891-5