Skip to main content

On the topology of translating solitons of the mean curvature flow

Abstract

In the present article we obtain classification results and topological obstructions for the existence of translating solitons of the mean curvature flow in euclidean space.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large. Vestnik Leningr. Univ. Math. 11, 5–17 (1956)

    Google Scholar 

  2. Altschuler, S., Wu, L.-F.: Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc. Var. Partial Differ. Equ. 2, 101–111 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Clutterbuck, J., Schnürer, O., Schulze, F.: Stability of translating solutions to mean curvature flow. Calc. Var. Partial Differ. Equ. 29, 281–293 (2007)

    Article  MATH  Google Scholar 

  4. Davila, J., del Pino, M., Nguyen, X.-H.: Finite topology self-translating surfaces for the mean curvature flow in \({\mathbb{R}}^{3}\). arXiv:1501.03867. pp. 1–45 (2015)

  5. Eschenburg, J.-H.: Maximum principle for hypersurfaces. Manuscr. Math. 64, 55–75 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ferus, D.: On the type number of hypersurfaces in spaces of constant curvature. Math. Ann. 187, 310–316 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Halldorsson, H.P.: Helicoidal surfaces rotating/translating under the mean curvature flow. Geom. Dedicata 162, 45–65 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hamilton, R.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24, 153–179 (1986)

    MATH  Google Scholar 

  10. Hopf, H.: Differential geometry in the large. Lecture Notes in Mathematics, vol. 1000. Springer-Verlag, Berlin (1983)

  11. Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature. Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990). Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, pp. 175–191 (1993)

  12. Hungerbühler, N., Smoczyk, K.: Soliton solutions for the mean curvature flow. Differ. Integral Equ. 13, 1321–1345 (2000)

    MATH  Google Scholar 

  13. Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Am. Math. Soc. 108(520) (1994)

  14. Lawson, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. (2) 89, 187–197 (1969)

    Article  MATH  Google Scholar 

  15. Milnor, J.: Morse Theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, NJ (1963)

  16. Milnor, J.: Topology from the Differentiable Viewpoint. The University Press of Virginia, Charlottesville, VA (1965)

    MATH  Google Scholar 

  17. Nadirashvili, N.: Hadamard’s and Calabi–Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126, 457–465 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nguyen, X.-H.: Complete embedded self-translating surfaces under mean curvature flow. J. Geom. Anal. 23, 1379–1426 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nguyen, X.-H.: Translating tridents. Commun. Partial Differ. Equ. 34, 257–280 (2009)

    Article  MATH  Google Scholar 

  20. Savas-Halilaj, A., Smoczyk, K.: Bernstein theorems for length and area decreasing minimal maps. Calc. Var. Partial Differ. Equ. 50, 549–577 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schoen, R.M.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ. Geom. 18, 791–809 (1984)

    MathSciNet  Google Scholar 

  22. Shahriyari, L.: Translating graphs by mean curvature flow. Geom. Dedicata 175, 57–64 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shahriyari, L.: Translating graphs by mean curvature flow. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-The Johns Hopkins University (2013)

  24. Simons, J.: Minimal varieties in riemannian manifolds. Ann. Math. (2) 88, 62–105 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  25. Smith, G.: On complete embedded translating solitons of the mean curvature flow that are of finite genus. arXiv:1501.04149. pp. 1–58 (2015)

  26. Smoczyk, K.: A relation between mean curvature flow solitons and minimal submanifolds. Math. Nachr. 229, 175–186 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, X.-J.: Convex solutions to the mean curvature flow. Ann. Math. (2) 173, 1185–1239 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank William H. Meeks III and Antonio Ros for fruitful discussions as well as Jesús Pérez for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Smoczyk.

Additional information

Communicated by J. Jost.

Francisco Martín is partially supported by MICINN-FEDER Grant No. MTM2011-22547. Andreas Savas-Halilaj is supported financially by the Grant \(E\varSigma \varPi A\): PE1-417.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martín, F., Savas-Halilaj, A. & Smoczyk, K. On the topology of translating solitons of the mean curvature flow. Calc. Var. 54, 2853–2882 (2015). https://doi.org/10.1007/s00526-015-0886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0886-2

Mathematics Subject Classification

  • 53C44
  • 53C21
  • 53C42