Skip to main content
Log in

Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \) be a bounded open domain in \(\mathbb {R}^n\) with smooth boundary and \(X=(X_1, X_2, \ldots , X_m)\) be a system of real smooth vector fields defined on \(\Omega \) with the boundary \(\partial \Omega \) which is non-characteristic for X. If X satisfies the Hörmander’s condition, then the vector fields is finite degenerate and the sum of square operator \(\triangle _{X}=\sum _{j=1}^{m}X_j^2\) is a finitely degenerate elliptic operator, otherwise the operator \(-\triangle _{X}\) is called infinitely degenerate. If \(\lambda _j\) is the jth Dirichlet eigenvalue for \(-\triangle _{X}\) on \(\Omega \), then this paper shall study the lower bound estimates for \(\lambda _j\). Firstly, by using the sub-elliptic estimate directly, we shall give a simple lower bound estimates of \(\lambda _j\) for general finitely degenerate \(\triangle _{X}\) which is polynomial increasing in j. Secondly, if \(\triangle _{X}\) is so-called Grushin type degenerate elliptic operator, then we can give a precise lower bound estimates for \(\lambda _j\). Finally, by using logarithmic regularity estimate, for infinitely degenerate elliptic operator \(\triangle _{X}\) we prove that the lower bound estimates of \(\lambda _j\) will be logarithmic increasing in j.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bramanti, M.: An Invitation to Hypoelliptic Operators and Hörmander’s Vector Fields. Springer, New York (2014)

    Book  MATH  Google Scholar 

  2. Chen, H., Liu, X., Wei, Y.: Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities. Calc. Var. Partial Differ. Equ. 43, 463–484 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, H., Liu, X., Wei, Y.: Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents. Ann. Global Anal. Geom. 39, 27–43 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, H., Liu, X., Wei, Y.: Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents. J. Differ. Equ. 252, 4200–4228 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, H., Liu, X., Wei, Y.: Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term. J. Differ. Equ. 252, 4289–4314 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, H., Liu, X., Wei, Y.: Multiple solutions for semi-linear corner degenerate elliptic equations. J. Funct. Anal. 266, 3815–3839 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, H., Luo, P., Tian, S.: Existence and regularity of solutions to semi-linear Dirichlet problem of infinitely degenerate elliptic operators with singular potential term. Sci. China Math. 56, 687–706 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, H., Luo, P., Tian, S.: Lower bounds of Dirichlet eigenvalues for degenerate elliptic operators and degenerate Schrödinger operators. Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig (2013)

  9. Chen, H., Luo, P., Tian, S.: Existence and regularity of multiple solutions for infinitely degenerate nonlinear elliptic equations with singular potential. J. Differ. Equ. 257, 3300–3333 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, H., Luo, P., Tian, S.: Multiplicity and regularity of solutions for infinitely degenerate elliptic equations with a free perturbation. Journal de Mathématiques Pures et Appliquées 103, 849–867 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, H., Qiao, R., Luo, P., Xiao, D.: Lower and upper bounds of Dirichlet eigenvalues for totally characteristic degenerate elliptic operators. Sci. China Math. 57, 2235–2246 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, H., Wei, Y., Zhou, B.: Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds. Math. Nachrichten 285, 1370–1384 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Cheng, Q.M., Wei, W.X.: A lower bound for eigenvalues of a clamped plate problem. Calc. Var. Partial Differ. Equ. 42, 579–590 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cheng, Q.M., Wei, W.X.: Upper and lower bounds for eigenvalues of the clamped plate problem. J. Differ. Equ. 255, 220–233 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cheng, Q.M., Yang, H.C.: Bounds on eigenvalues of Dirichlet Laplacian. Math. Ann. 337, 159–175 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Christ, M.: Hypoellipticity in the infinitely degenerate regime. In: Proceedings of the International Conference on Several Complex Variable at the Ohio State University, USA (1997)

  17. Fefferman, C., Phong, D.: Subelliptic eigenvalue problems. In: Proceedings of the Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth Math. Series, pp. 590–606 (1981)

  18. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145, 1–101 (2000)

    MathSciNet  Google Scholar 

  19. Hansson, A.M., Laptev, A.: Sharp Spectral Inequalities for the Heisenberg Laplacian. LMS Lectore Note Series (354), pp. 100–115. Cambridge University Press, Cambridge (2008)

  20. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53, 503–523 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jerison, D., Sánchez-Calle, A.: Estimates for the heat kernel for sum of squares of vector fields. Indiana Univ. Math. J. 35, 835–854 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jerison, D., Sánchez-Calle, A.: Subelliptic second order differential operators. Complex analysis III (1987)

  24. Kohn, J.J.: Subellipticity of \(\bar{\partial }\)-Neumann problem on pseudoconvex domains: sufficient conditions. Acta Math. 142, 79–122 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kohn, J.J.: Hypoellipticity of some degenerate subelliptic operators. J. Funct. Anal. 159, 203–216 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kohn, J.J.: Hypoellipticity at points of infinite type. In: Proceedings of the International Conference on Analysis, Geometry, Number Theory in honor of Leon Ehrenpreis. Temple University (1998)

  27. Kröger, P.: Estimates for sums of eigenvalues of the Laplacian. J. Funct. Anal. 126, 217–227 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309–318 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. Proc. Sym. Pure Math. 36, 241–252 (1980)

    Article  MathSciNet  Google Scholar 

  30. Métivier, G.: Fonction spectrale d’opérateurs non elliptiques. Commun. PDE. 1, 467–519 (1976)

    Article  MATH  Google Scholar 

  31. Melas, A.D.: A lower bound for sums of eigenvalues of the Laplacian. Proc. Am. Math. Soc. 131, 631–636 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Morimoto, Y.: A criterion for hypoelliplicity of scond order differential operators. Osaka J. Math. 24(3), 651–675 (1987)

    MATH  MathSciNet  Google Scholar 

  33. Morimoto, Y.: Hypoelliplicity for infinitely degenerate elliptic operators. Osaka J. Math. 24, 13–35 (1987)

    MATH  MathSciNet  Google Scholar 

  34. Morimoto, Y., Morioka, T.: Hypoellipticity for elliptic operators with infinite degeneracy. In: Hua, C., Rodino, L. (eds.) Partial Differential Equations and Their Applications, pp. 240–259. World Sci. Publishing, River Edge (1999)

    Google Scholar 

  35. Morimoto, Y., Xu, C.J.: Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely degenerate elliptic operators. Astérisque 234, 245–264 (2003)

    MathSciNet  Google Scholar 

  36. Nagel, A., Stein, E.M., Wainger, E.M.S.: Balls and metrics defined by vector fields I, basic properties. Acta Math. 155, 103–147 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pólya, G.: On the eigenvalues of vibrating membranes. Proc. London Math. Soc. 11, 419–433 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of square of vector fields. Invent. Math. 78, 143–160 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    Article  MATH  MathSciNet  Google Scholar 

  40. Xu, C.J.: Regularity problem for quasi-linear second order subelliptic equations. Commun. Pure Appl. Math. 45, 77–96 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Additional information

Communicated by J. Jost.

This work is supported by National Natural Science Foundation of China (Grant No. 11131005) and China Postdoctoral Science Foundation (Grant No. 2015M571144).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Luo, P. Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators. Calc. Var. 54, 2831–2852 (2015). https://doi.org/10.1007/s00526-015-0885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0885-3

Mathematics Subject Classification

Navigation