Skip to main content
Log in

Abstract

Over the space of Kähler metrics associated to a fixed Kähler class, we first prove the lower bound of the energy functional \(\tilde{E}^\beta \), then we provide the criteria of the geodesics rays to detect the lower bound of \(\tilde{{\mathfrak {J}}}^\beta \)-functional . They are used to obtain the I-properness of Mabuchi’s K-energy. The criteria are examined under a necessary and sufficient condition by showing the convergence of the negative gradient flow of \(\tilde{{\mathfrak {J}}}^\beta \)-functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Some nonlinear problems in Riemannian geometry. In: Springer Monographs in Mathematics. Springer, Berlin (1998)

  2. Calabi, E., Chen, X.: The space of Kähler metrics. II. J. Differ. Geom. 61(2), 173–193 (2002)

  3. Calamai, S., Zheng, K.: Geodesics in the space of Kähler cone metrics, I. To appear in Am. J. Math. (2012) arXiv:1205.0056v4

  4. Chen, X.: A new parabolic flow in Kähler manifolds. Commun. Anal. Geom. 12(4), 837–852 (2004)

  5. Chen, X.: On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 12, 607–623 (2000)

  6. Chen, X.: Space of Kähler metrics. IV. On the lower bound of the \(K\)-energy (2008). arXiv:0809.4081v2

  7. Chen, X.: Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance. Invent. Math. 175(3), 453–503 (2009)

  8. Chen, X.: The space of Kähler metrics. J. Differ. Geom. 56(2), 189–234 (2000)

  9. Ding, W.Y.: Remarks on the existence problem of positive Kähler–Einstein metrics. Math. Ann. 282(3), 463–471 (1988)

  10. Ding, W.Y., Tian, G.: The generalized Moser–Trudinger inequality. In: Proceedings of Nankai International Conference on Nonlinear Analysis (1993)

  11. Donaldson, S.K.: Moment maps and diffeomorphisms. Asian J. Math. 3(1), 1–15 (1999). (Sir Michael Atiyah: a great mathematician of the twentieth century)

  12. Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar. Am. Math. Soc. Transl. Ser. 2, vol. 196, pp. 13–33. Am. Math. Soc., Providence (1999)

  13. Fang, H., Lai, M., Ma, X.: On a class of fully nonlinear flows in Kähler geometry. J. Reine Angew. Math. 653, 189–220 (2011)

  14. Fang, H., Lai, M., Song, J., Weinkove, B.: The \(J\)-flow on Kähler surfaces: a boundary case. Anal. PDE 7(1), 215–226 (2014)

  15. Guan, B., Li, Q.: The Dirichlet problem for a complex Monge–Ampère type equation on Hermitian manifolds. Adv. Math. 246, 351–367 (2013)

  16. Lejmi, M., Székelyhidi, G.: The \(J\)-flow and stability. Adv. Math. 274, 404–431 (2015)

  17. Li, H., Shi, Y., Yao, Y.: A criterion for the properness of the \(K\)-energy in a general Kähler class. Math. Ann. 361(1–2), 135–156 (2015)

  18. Li, H., Zheng, K.: Kähler non-collapsing, eigenvalues and the Calabi flow. J. Funct. Anal. 267(5), 1593–1636 (2014)

  19. Mabuchi, T.: \(K\)-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986)

  20. Moser, J.K.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

  21. Onofri, E.: On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86(3), 321–326 (1982)

  22. Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Moser–Trudinger inequality on Kähler–Einstein manifolds. Am. J. Math. 130(4), 1067–1085 (2008)

  23. Semmes, S.: Complex Monge–Ampère and symplectic manifolds. Am. J. Math. 114(3), 495–550 (1992)

  24. Song, J., Weinkove, B.: On the convergence and singularities of the \(J\)-flow with applications to the Mabuchi energy. Commun. Pure Appl. Math. 61(2), 210–229 (2008)

  25. Tian, G.: On Kähler–Einstein metrics on certain Kähler manifolds with \(c_1(M)>0\). Invent. Math. 89(2), 225–246 (1987)

  26. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)

  27. Tian, G.: Canonical metrics in Kähler geometry. In: Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2000). (Notes taken by Meike Akveld )

  28. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

  29. Weinkove, B.: Convergence of the \(J\)-flow on Kähler surfaces. Commun. Anal. Geom. 12(4), 949–965 (2004)

  30. Weinkove, B.: On the \(J\)-flow in higher dimensions and the lower boundedness of the Mabuchi energy. J. Differ. Geom. 73(2), 351–358 (2006)

  31. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zheng.

Additional information

Communicated by J. Jost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K. I-properness of Mabuchi’s K-energy. Calc. Var. 54, 2807–2830 (2015). https://doi.org/10.1007/s00526-015-0884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0884-4

Mathematics Subject Classification

Navigation