Skip to main content
Log in

Multiple positive solutions for Schrödinger systems with mixed couplings

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the effects of mixed couplings for nonlinear Schrödinger systems. We show due to the mixed couplings there exist multiple vector positive solutions which exhibit interesting new patterns of co-existence of synchronization and segregation. For a 3-system we show the existence of multiple positive vector solutions with the first two components being synchronized and segregated from the third component. We investigate the asymptotic of these solutions with a large attractive coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. PDEs 30, 85–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Dancer, E.N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. PDEs 37, 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Part. Diff. Equ. 19, 200–207 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byeon, J.: Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli. J. Diff. Equations 136, 136–165 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Catrina, F., Wang, Z.-Q.: Nonlinear elliptic equations on expanding symmetric domains. J. Diff. Equ. 156, 153–181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, S., Lin, C.S., Lin, T.C., Lin, W.: Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Phys. D 196, 341–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conti, M., Terracini, S., Verzini, G.: Nehari’s problem and competing species system. Ann. I. H. Poincaré 19, 871–888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dancer, E.N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. I. H. Poincaré 27, 953–969 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ikoma, N., Tanaka, K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. Partial Differ. 40, 449–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kwong, M.-K.: Uniqueness of positive solutions of \(\Delta u+u^p=0\) in \(R^n\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, T.-C., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n, n\le 3\). Comm. Math. Phys. 255, 629–653 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, T.-C., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré 22, 403–439 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, J., Liu, X., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. PDEs (to appear)

  17. Liu, Z.L., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Comm. Math. Phys. 282, 721–731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Z.L., Wang, Z.-Q.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10, 175–193 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Diff. Equ. 299, 743–767 (2006)

    Article  MathSciNet  Google Scholar 

  20. Mitchell, M., Segev, M.: Self-trapping of inconherent white light. Nature 387, 880–882 (1997)

    Article  Google Scholar 

  21. Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10, 41–71 (2008)

    MathSciNet  Google Scholar 

  22. Noris, B., Ramos, M.: Existence and bounds of positive solutions for a nonlinear Schrödinger system. Proc. AMS 138, 1681–1692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm. Pure Appl. Math. 63, 267–302 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Rüegg, Ch., et al.: Bose-Einstein condensation of the triple states in the magnetic insulator TlCuCl\(_3\). Nature 423, 62–65 (2003)

    Article  Google Scholar 

  25. Sato, Y., Wang, Z.-Q.: On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincare 30, 1–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sato, Y., Wang, Z.-Q.: On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete Contin. Dyn. Syst. 35, 2151–2164 (2015)

  27. Sato, Y., Wang, Z.-Q.: Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings. Adv. Nonlinear Stud. 15, 1–22 (2015)

  28. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^n\). Comm. Math. Phys. 271, 199–221 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soave, N.: On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition. Calc. Var. PDEs (2014). doi:10.1007/s00526-014-0764-3

    Google Scholar 

  30. Tavares, H., Terracini, S.: Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincare 29, 279–300 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tavares, H., Terracini, S., Verzini, G., Weth, T.: Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems. Comm. Partial Diff. Equ. 36, 1988–2010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Terracini, S., Verzini, G.: Multipulse phase in \(k\)-mixtures of Bose-Einstein condensates. Arch. Rat. Mech. Anal. 194, 717–741 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tian, R., Wang, Z.-Q.: Multiple solitary wave solutions of nonlinear Schrödinger systems. Topo. Meth. Non. Anal. 37, 203–223 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Wang, Z.-Q., Willem, M.: Partial symmetry of vector solutions for elliptic systems. Journald’ Analyse Mathematique 122, 69–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wei, J., Weth, T.: Nonradial symmetric bound states for a system of two coupled Schrödinger equations. Rend. Lincei Mat. Appl. 18, 279–293 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rat. Mech. Anal. 190, 83–106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wei, J., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 11, 1003–1011 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Willem, M.: Minimax theorems, Programme on Nonlinear Differential Equations Applications, vol. 24. Birkhauser (1996)

Download references

Acknowledgments

The authors are grateful to the referee for a thoughtful reading of the manuscript and for several helpful suggestions. The first author is partially supported by the JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation “Deepening and Evolution of Mathematics and Physics, Building of International Network Hub based on OCAMI”. The second author is supported by NSFC11271201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Sato.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Wang, ZQ. Multiple positive solutions for Schrödinger systems with mixed couplings. Calc. Var. 54, 1373–1392 (2015). https://doi.org/10.1007/s00526-015-0828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0828-z

Mathematics Subject Classification

Navigation