Skip to main content
Log in

On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study existence and phase separation, and the relation between these two aspects, of positive bound states for the nonlinear elliptic system

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \Delta u_i + \lambda _i u_i = \sum \nolimits _{j=1}^d \beta _{ij} u_j^2 u_i &{} \hbox { in }\, \Omega \\ u_1 =\cdots = u_d=0 &{} \hbox { on }\, \partial \Omega . \end{array}\right. \end{aligned}$$

This system arises when searching for solitary waves for the Gross–Pitaevskii equations. We focus on the case of simultaneous cooperation and competition, that is, we assume that there exist two pairs \((i_1,j_1)\) and \((i_2,j_2)\) such that \(i_1 \ne j_1\), \(i_2 \ne j_2\), \(\beta _{i_1 j_1}>0\) and \(\beta _{i_2,j_2}<0\). Our first main results establishes the existence of solutions with at least \(m\) positive components for every \(m \le d\); any such solution is a minimizer of the energy functional \(J\) restricted on a Nehari-type manifold \(\mathcal {N}\). At a later stage, by means of level estimates on the constrained second differential of \(J\) on \(\mathcal {N}\), we show that, under some additional assumptions, any minimizer of \(J\) on \(\mathcal {N}\) has all nontrivial components. In order to prove this second result, we analyse the phase separation phenomena which involve solutions of the system in a not completely competitive framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  2. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) 75(1), 67–82 (2007)

  3. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–198 (1995)

    Article  Google Scholar 

  4. Bartsch, T., Dancer, E.N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3–4), 345–361 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19(3), 200–207 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buljan, H., Schwartz, T., Segev, M., Soljacic, M., Christoudoulides, D.: Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium. J. Opt. Soc. Am. B. 21(2), 397–404 (2004)

    Article  Google Scholar 

  8. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

    MATH  Google Scholar 

  9. Caffarelli, L.A., Lin, F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21, 847–862 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Colorado, E.: Positive ground states for systems of coupled nonlinear Schrödinger equations (in preparation)

  11. Conti, M., Terracini, S., Verzini, G.: Nehari’s problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(6), 871–888 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Conti, M., Terracini, S., Verzini, G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198(1), 160–196 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gross, E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento (10) 20, 454–477 (1961)

  14. Hioe, F.T.: Solitary waves for \(N\) coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 82, 1152–1155 (1999)

    Article  Google Scholar 

  15. Lin, T.-C., Wei, J.: Erratum: “Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n\), \(n \le 3\)”. Commun. Math. Phys. 277(2), 573–576 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lin, T.-C., Wei, J.: Ground state of \(N \)coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n\), \(n \le 3\). Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin, T.-C., Wei, J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229(2), 538–569 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lin, T.-C., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincar Anal. Non Linaire 22(4), 403–439 (2005)

  19. Liu, Z., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282(3), 721–731 (2008)

    Article  MATH  Google Scholar 

  20. Liu, Z., Wang, Z.-Q.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10(1), 175–193 (2010)

    MATH  MathSciNet  Google Scholar 

  21. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10(1), 47–71 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Myatt, C.J., Burt, E.A., Ghrits, R.W., Cornell, E.A., Wieman, C.E.: Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997)

    Article  Google Scholar 

  24. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    MATH  MathSciNet  Google Scholar 

  25. Noris, B., Verzini, G.: A remark on natural constraints in variational methods and an application to superlinear Schrödinger systems. J. Differ. Equ. 254(3), 1529–1547 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Parkins, A.S., Walls, D.F.: The physics of trapped dilute-gas Bose-Einstein condensates. Phys. Rep. 303, 1–80 (1998)

    Article  Google Scholar 

  28. Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation, Oxford (2003)

  29. Pomponio, A.: Coupled nonlinear Schrödinger systems with potentials. J. Differ. Equ. 227(1), 258–281 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rüegg, Ch., Cavadini, N., Furrer, A., Güdel, H.U., Krämer, K., Mutka, H., Wildes, A., Habicht, K., Vorderwisch, P.: Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3. Nature 423, 62–65 (2003)

    Article  Google Scholar 

  31. Sato, Y., Wang, Z.-Q.: Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings (2013, preprint)

  32. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^n\). Commun. Math. Phys. 271(1), 199–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Terracini, S., Verzini, G.: Multipulses phases in \(k\)-mixtures of Bose–Einstein condensates. Arch. Ration. Mech. Anal. 194(3), 717–741 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Timmermans, E.: Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1998)

    Article  Google Scholar 

  35. Wei, J., Weth, T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21(2), 305–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wei, J., Weth, T.: Radial solutions and phase seperation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190, 83–106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Professor Susanna Terracini for having suggested the problem, and for several inspiring discussions. Moreover, we are indebted with Hugo Tavares for some precious suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Soave.

Additional information

Communicated by L. Caffarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soave, N. On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition. Calc. Var. 53, 689–718 (2015). https://doi.org/10.1007/s00526-014-0764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0764-3

Mathematics Subject Classification

Navigation