Skip to main content

Liouville type results for local minimizers of the micromagnetic energy

Abstract

We study local minimizers of the micromagnetic energy in small ferromagnetic 3d convex particles for which we justify the Stoner–Wohlfarth approximation: given a uniformly convex shape \(\Omega \subset \varvec{\mathbf {R}}^3\), there exist \(\delta _c\)>0 and \(C > 0\) such that for \(0 < \delta \le \delta _c\) any local minimizer \(\mathbf {m}\) of the micromagnetic energy in the particle \(\delta \Omega \) satisfies \(\Vert \nabla \mathbf {m} \Vert _{L^2} \leqslant C \delta ^2\). In the case of ellipsoidal particles we strengthen this result by proving that, for \(\delta \) small enough, local minimizers are exactly spatially uniform. This last result extends W.F. Brown’s fundamental theorem for fine 3d ferromagnetic particles Brown (J Appl Phys 39:463–488, 1968), Di Fratta et al. (Physica B 407(9):1368–1371, 2011) which states the same result but only for global minimizers. As a by-product of the method that we use, we establish a new Liouville type result for locally minimizing \(p\)-harmonic maps with values into a closed subset of a Hilbert space. Namely, we establish that in a smooth uniformly convex domain of \(\mathbf {R}^d\) any local minimizer of the \(p\)-Dirichlet energy (\(p > 1\), \(p \ne d\)) is constant.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Aharoni, A.: Elongated single-domain ferromagnetic particles. J. Appl. Phys. 63(12), 5879–5882 (1988)

  2. 2.

    Alouges, F., Beauchard, K.: Magnetization switching on small ferromagnetic ellipsoidal samples. ESAIM Control Optim. Calc. Var. 15(3), 676–711 (2009)

  3. 3.

    Alouges, F., Conti, S., DeSimone, A., Pokern, Y.: Energetics and switching of quasi-uniform states in small ferromagnetic particles. M2AN 38(2), 235–248 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    Alouges, F., Faure, S., Steiner, J.: The vortex core structure inside spherical ferromagnetic particles. Disc. Cont. Dyn. Syst. A 27(4), 1259–1283 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22(4), 751–756 (2003)

  6. 6.

    Brown, W.F.: The fundamental theorem of the theory of fine ferromagnetic particles. J. Appl. Phys. 39, 463–488 (1968)

  7. 7.

    Brown, W.F.: Magnetostatic Principles in Ferromagnetism. North-Holland Publishing Co, Amsterdam (1962)

  8. 8.

    Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in a bounded domain. Differ. Integr. Equ. 14(2), 213–229 (2001)

  9. 9.

    Cowburn, R.P., Welland, M.E.: Micromagnetics of the single-domain state of square ferromagnetic nanostructures. Phys. Rev. B 58, 9217–9226 (1998)

  10. 10.

    DeSimone, A.: Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30(5), 591–603 (1995). Microstructure and phase transitions in solids (Udine, 1994)

  11. 11.

    Di Fratta, G., Serpico, C., D’Aquino, M.: A generalization of the fundamental theorem of brown for fine ferromagnetic particles. Physica. B 407(9), 1368–1371 (2011)

  12. 12.

    Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10(1), 1–68 (1978)

  13. 13.

    Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc. 20(5), 385–524 (1988)

  14. 14.

    Eells, J., Lemaire, L.: Selected topics in harmonic maps, volume 50 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington DC (1983)

  15. 15.

    Eells, James, Lemaire, Luc: Two Reports on Harmonic Maps. World Scientific Publishing Co., Inc., River Edge (1995)

    Book  MATH  Google Scholar 

  16. 16.

    Fuchs, M.: \(P\)-harmonic obstacle problems I. Partial regularity theory. Ann. Mat. Pura Appl. 156(4), 127–158 (1990)

  17. 17.

    Fuchs, M.: The blow-up of \(p\)-harmonic maps. Manuscripta Math. 81(1–2), 89–94 (1993)

  18. 18.

    Hardt, R., Kinderlehrer, D., Lin, F.-H.: Stable defects of minimizers of constrained variational principles. Ann. Inst. H. Poincaré Anal. Non Linéaire, 5(4), 297–322 (1988)

  19. 19.

    Hardt, R.M.: Singularities of harmonic maps. Bull. Am. Math. Soc. (N.S.) 34(1), 15–34 (1997)

  20. 20.

    Hardt, R., Kinderlehrer, D.: Some regularity results in ferromagnetism. Comm. Partial Differ. Equ. 25(7–8), 1235–1258 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin, Heidelberg (1998)

  22. 22.

    Hélein, F., Wood, J.C.: Harmonic maps. In: Proceedings of Handbook of Global Analysis, Elsevier, Amsterdam (2008), 417–491

  23. 23.

    Kellogg, O.D.: Foundations of Potential Theory. Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg (1967)

  24. 24.

    Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37(2), 349–367 (1988)

  25. 25.

    Morrey Jr C.B.: The problem of plateau on a Riemannian manifold. Ann. Math. 49(2), 807–851 (1948)

  26. 26.

    Maxwell, J.C.: A treatise on electricity and magnetism. In: Proceedings of Oxford Classic Texts in the Physical Sciences vol. 2. The Clarendon Press Oxford University Press, New York (1998). Reprint of the third (1891) edition

  27. 27.

    Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67(11,12), 351–357 (1945)

  28. 28.

    Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

  29. 29.

    Scheven, Christoph: Partial regularity for stationary harmonic maps at a free boundary. Math. Z. 253(1), 135–157 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. 30.

    Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

  31. 31.

    Slastikov, V.V.: A note on configurational anisotropy. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466(2123), 3167–3179 (2010)

  32. 32.

    Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. Ser. A 240, 3475–3518 (1948)

  33. 33.

    Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University Centre for Mathematical Analysis, Canberra (1983)

Download references

Acknowledgments

The first and last authors acknowledge support from the ANR project ANR-08- BLAN-0199-01 of the French Ministry of Research, “Micromagnetism: Mathematics Applied to New Physical Interactions”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benoit Merlet.

Additional information

Communicated by F. H. Lin.

Appendix A (proof of Proposition 5)

Appendix A (proof of Proposition 5)

Let \(\Omega \subset \mathbf {R}^d\) be a bounded convex smooth open set with diameter \(\delta > 0\) and assume that \(0 \in \partial \Omega \). We consider a real valued function \(f \in C^{\infty } ( \bar{\Omega } )\), (the result for \(f \in H^1 (\Omega )\) is obtained by density of \(C^{\infty } ( \bar{\Omega })\) in \(H^1 (\Omega )\) and by continuity of the trace mapping \(f \in H^1 (\Omega ) \mapsto f_{| \partial \Omega } \in L^2 (\partial \Omega )\)). We have to estimate the quantity

$$\begin{aligned} I (f) :=\int \limits _{\Omega } \int \limits _{\partial \Omega } | f (x) - f (y) |^2 \left( \mathbf {n} (y) \cdot y \right) d\mathcal {H}^{d - 1} (y) \, dx. \end{aligned}$$

For \(y \in \partial \Omega \), we define the following weighted mean value of \(f\) along the segment \((0, 1) y\):

$$\begin{aligned} \langle f \rangle _y^{} : = \frac{d + 1}{2} \int \limits _0^1 r^{\frac{d - 1}{2}} f (ry) \, dr. \end{aligned}$$

We then decompose \(f (y)\) as \(\langle f \rangle _y^{} + [f (y) - \langle f \rangle _y^{}]\) to get \(I (f) \le 2 (| \Omega | I_1 (f)_{} + I_2 (f))\), with

$$\begin{aligned} I_1 (f) :=\int \limits _{\partial \Omega } | f (y) - \langle f \rangle _y^{} |^2 \left( \mathbf {n} (y) \cdot y \right) d \mathcal {H}^{d - 1} (y),\end{aligned}$$
(72)
$$\begin{aligned} I_2 (f) :=\int \limits _{\Omega } \int \limits _{\partial \Omega } | f (x) - \langle f \rangle _y^{} |^2 \left( \mathbf {n} (y) \cdot y \right) d \mathcal {H}^{d - 1} (y) \, dx. \end{aligned}$$
(73)

We start by estimating \(I_1 (f)\). Let us fix \(y \in \partial \Omega \), we have,

$$\begin{aligned} f (y) - \langle f \rangle _y^{}&= \frac{(d + 1)}{2} \int \limits _0^1 r^{\frac{d - 1}{2}} (f (y) - f (ry)) d r\end{aligned}$$
(74)
$$\begin{aligned}&= \frac{(d + 1)}{2} \int \limits _0^1 r^{\frac{d - 1}{2}} (1 - r) \int \limits _0^1 y \cdot \nabla f ((r + (1 - r) s) y) \,ds \, dr \end{aligned}$$
(75)

Using the change of variable \(s = (t - r) / (1 - r)\) and then Fubini, we obtain,

$$\begin{aligned} f (y) - \langle f \rangle _y^{} = \frac{(d + 1)}{2} \int \limits _0^1 r^{\frac{d - 1}{2}} \int \limits _r^1 y \cdot \nabla f (ty) \, dt \, dr = \int \limits _0^1 y \cdot \nabla f (ty) t^{\frac{d + 1}{2}} d t. \end{aligned}$$

Squaring and using the Jensen inequality, we get:

$$\begin{aligned} | f (y) - \langle f \rangle _y^{} |^2 \, \le \, | y |^2 \int \limits _0^1 | \nabla f (ty) |^2 t^{d + 1} d t \, \le \, \delta ^2 \int \limits _0^1 | \nabla f (ty) |^2 t^{d - 1} d t. \end{aligned}$$

Then, we multiply by \(\left( y \cdot \mathbf {n} (y) \right) \) and integrate in \(y \in \partial \Omega \). Using the change of variable \(z = \psi (y, t) :=ty\), which maps \(\partial \Omega \times (0, 1)\) onto \(\Omega \setminus \{ 0 \}\), we get

$$\begin{aligned} I_1 (f) \, \le \, \delta ^2_{} \int \limits _{\Omega } | \nabla f |^2 (z) \frac{[t (z)]^{d - 1} \left( y (z) \cdot \mathbf {n} (y (z)) \right) }{J_{\psi } (\psi ^{- 1} (z))} \, dz \,\, = \,\, \delta ^2 \int \limits _{\Omega } | \nabla f |^2 (z) d z , \end{aligned}$$
(76)

with the notation, \(\psi ^{- 1} (z) = : (y (z), t (z))\) and \(J_{\psi } (y, t) = \sqrt{\det D \psi ^T \cdot D \psi } (y, t)\). Indeed, introducing the orthogonal decomposition \(\mathbf {R}^d = T_y \partial \Omega \oplus \mathbf {R} \mathbf {n} (y) \simeq T_y \partial \Omega \oplus \mathbf {R}\), we compute the Jacobian matrix of \(\psi \) in these spaces:

$$\begin{aligned} D \psi _{} (y, t) \, = \, \left( \begin{array}{cc} t \mathrm{Id }_{T_y \partial \Omega } &{} \left( y - \left( y \cdot \mathbf {n} (y) \right) \mathbf {n} (y) \right) \\ 0 &{} \left( y \cdot \mathbf {n} (y) \right) \end{array}\right) . \end{aligned}$$

The Jacobian determinant of \(\psi \) is \(J_{\psi } (y, s) = t^{d - 1} \left( y \cdot \mathbf {n} (y) \right) \).

Now we bound \(I_2 (f)\). We first use the definition of \(\langle f \rangle _y^{}\) and the Cauchy–Schwarz inequality to get for every \((x, y) \in \Omega \times \partial \Omega \):

$$\begin{aligned} | f (x) - \langle f \rangle _y^{} |^2 \, \le \, \frac{(d + 1)^2}{4} \int \limits _0^1 | f (x) - f (ry) |^2 r^{d - 1} d r \end{aligned}$$

Integrating in \(y \in \partial \Omega \), and using the change of variable \(z = \psi (y, r)\) as above, we obtain (after integration in \(x \in \Omega \)):

$$\begin{aligned} I_2 (f) \, \le \, \frac{(d + 1)^2}{4} \int \limits _{\Omega \times \Omega } | f (x) - f (z) |^2 \, dx\, dz \, \le \, (d + 1)^2 | \Omega |^{^{}} C_{P^{}}^2 \Vert \nabla f \Vert _{L^2}^2 . \end{aligned}$$
(77)

Inequality (5) follows from (76) and (77) with

$$\begin{aligned} \frac{C_P'}{\delta } = \sqrt{2 \left[ 1 + (d + 1)^2 \left( \frac{C_P}{\delta } \right) ^2 \right] } \, \le \, \sqrt{2} \left( 1 + \frac{(d + 1) C_P}{\delta } \right) . \end{aligned}$$

Since \(C_P / \delta \le 1 / \pi \), we have \(C_P' / \delta \le \sqrt{2} (1 + (d + 1) / \pi )\) as claimed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alouges, F., Di Fratta, G. & Merlet, B. Liouville type results for local minimizers of the micromagnetic energy. Calc. Var. 53, 525–560 (2015). https://doi.org/10.1007/s00526-014-0757-2

Download citation

Mathematics Subject Classification (2000)

  • 35B35
  • 35B53
  • 49K20
  • 49K40
  • 49S05
  • 74G65
  • 82D40