Skip to main content

Advertisement

Log in

Nonlinear Schrödinger equations near an infinite well potential

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation

where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\), i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \), \(V_\infty |_\Omega \in L^\infty (\Omega )\), and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves

We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J.: A primer on connectivity. In: Proc. Conf. Fixed Point Theory (Sherbrooke, Que., 1980), pp. 455–483. Lecture Notes in Math., vol. 886. Springer, Berlin (1981)

  2. Alves, C.O.: Existence of multi-bump solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 6, 491–509 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: Multiplicity of positive solutions for a class of problems with critical growth in \({\mathbb{R}}^N\). Proc. R. Soc. Edinburgh 52, 1–21 (2009)

    Google Scholar 

  4. Alves, C.O., Souto, M.A.S.: Multiplicity of positive solutions for a class of problems with exponential critical growth in \({\mathbb{R}}^2\). J. Differ. Equ. 244, 1502–1520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartsch, T., d’Aprile, T., Pistoia, A.: Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries. Ann. l’Inst. H. Poincaré, Anal. Nonlinear. (2013). http://dx.doi.org/10.1016/j.anihpc.2013.01.001

  6. Bartsch, T., d’Aprile, T., Pistoia, A.: On the profile of sign changing solutions of an almost critical problem in the ball. Bull. London Math. Soc. (2013). doi:10.1112/blms/bdt061

  7. Bartsch, T., Micheletti, A., Pistoia, A.: On the existence and the profile of nodal solutions of elliptic equations involving critical growth. Calc. Var. Part. Differ. Equ. 26, 265–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bartsch, T., Tang, Z.: Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discret. Contin. Dyn. Syst. 33, 7–26 (2013)

    MATH  MathSciNet  Google Scholar 

  10. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}}^N\). Commum. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chabrowski, J., Wang, Z.-Q.: Exterior nonlinear Neumann problem. Nonlinear Differ. Equ. Appl. 13, 683–697 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  13. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  14. Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397–419 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding, Y., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscr. Math. 112, 109–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Furtado, M., Silva, E.A.B., Xavier, M.S.: Multiplicity and concentration of solutions for elliptic systems with vanishing potentials. J. Differ. Equ. 249, 2377–2396 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang, Y., Zhou, H.-S.: Schrödinger–Poisson system with steep potential well. J. Differ. Equ. 251, 582–608 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kondrat’ev, V., Shubin, M.: Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry. Oper. Theory Adv. Appl. 110, 185–226 (1999)

    MathSciNet  Google Scholar 

  19. Liu, Z., van Heerden, F.A., Wang, Z.-Q.: Nodal type bound states of Schrödinger equations via invariant set and minimax methods. J. Differ. Equ. 214, 358–390 (2005)

    Article  MATH  Google Scholar 

  20. Liu, X., Huang, Y.: Sign-changing solutions for a class of nonlinear Schrödinger equations. Bull. Australian Math. Soc. 80, 294–305 (2009)

    Article  MATH  Google Scholar 

  21. Liu, X., Huang, Y., Liu, J.: Sign-changing solutions for an asymptotically linear Schrödinger equation with deepening potential well. Adv. Differ. Equ. 16, 1–30 (2011)

    MATH  Google Scholar 

  22. Molchanov, A.M.: On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order. Trudy Mosk. Matem. Obshchestva 2, 169–199 (in Russian). Adv. Differ. Equ. 16(2011), 1–30 (1953)

    Google Scholar 

  23. Musso, M., Pistoia, A.: Tower of bubbles for almost critical problems in general domains. J. Math. Pure Appl. 93, 1–40 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pankov, A.: On decay of solutions to nonlinear Schrödinger equations. Proc. Am. Math. Soc. 136, 2565–2570 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Petryshin, W.V.: Generalized Topological Degree and Semilinear Equations. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  26. Pistoia, A., Weth, T.: Sign-changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann. Inst. H. Poincaré. Anal. Nonlinear. 24, 325–340 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Sato, Y., Tanaka, K.: Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc. 361, 6205–6253 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stuart, C.A., Zhou, H.-S.: Global branch of solutions for non-linear Schrödinger equations with deepening potential well. Proc. Lond. Math. Soc. 92, 655–681 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, Z., Zhou, H.-S.: Positive solutions for nonlinear Schrödinger equations with deepening potential well. J. Eur. Math. Soc. 11, 545–573 (2009)

    Article  MATH  Google Scholar 

  30. Zou, W.: Sign-changing saddle point. J. Funct. Anal. 219, 433–468 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bartsch.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, T., Parnet, M. Nonlinear Schrödinger equations near an infinite well potential. Calc. Var. 51, 363–379 (2014). https://doi.org/10.1007/s00526-013-0678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0678-5

Mathematics Subject Classification (2000)

Navigation